Abstract
We present generic transformations, which allow to translate classic fault-tolerant distributed algorithms and their correctness proofs into a real-time distributed computing model (and vice versa). Owing to the non-zero-time, non-preemptible state transitions employed in our real-time model, scheduling and queuing effects (which are inherently abstracted away in classic zero step-time models, sometimes leading to overly optimistic time complexity results) can be accurately modeled. Our results thus make fault-tolerant distributed algorithms amenable to a sound real-time analysis, without sacrificing the wealth of algorithms and correctness proofs established in classic distributed computing research. By means of an example, we demonstrate that real-time algorithms generated by transforming classic algorithms can be competitive even w.r.t. optimal real-time algorithms, despite their comparatively simple real-time analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and link failures. Theoretical Computer Scienc (in Press, Corrected Proof, 2010)
Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)
Lynch, N.: Distributed Algorithms. Morgan Kaufman Publishers, Inc., San Francisco (1996)
Meyer, F.J., Pradhan, D.K.: Consensus with dual failure modes. In: Digest of Papers of the 17th International Symposium on Fault-Tolerant Computing, pp. 48–54 (July 1987)
Moser, H.: A Model for Distributed Computing in Real-Time Systems. Ph.D. thesis, Technische Universität Wien, Fakultät für Informatik (May 2009)
Moser, H.: Towards a real-time distributed computing model. Theoretical Computer Science 410(6-7), 629–659 (2009)
Moser, H.: The byzantine generals’ round duration. Research Report 9/2010, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria (2010)
Moser, H., Schmid, U.: Optimal clock synchronization revisited: Upper and lower bounds in real-time systems. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 95–109. Springer, Heidelberg (2006)
Moser, H., Schmid, U.: Reconciling distributed computing models and real-time systems. In: Proceedings Work in Progress Session of the 27th IEEE Real-Time Systems Symposium (RTSS 2006), Rio de Janeiro, Brazil, pp. 73–76 (December 2006)
Moser, H., Schmid, U.: Reconciling fault-tolerant distributed algorithms and real-time computing. Research Report 11/2010, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria (2010), http://www.vmars.tuwien.ac.at/documents/extern/2770/RR.pdf
Sha, L., Abdelzaher, T., Arzen, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical perspective. Real-Time Systems Journal 28(2/3), 101–155 (2004)
Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems. Microprocess. Microprogram. 40(2-3), 117–134 (1994)
Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous systems with hybrid process and link failures. Distributed Computing 20(2), 115–140 (2007), http://www.vmars.tuwien.ac.at/documents/extern/2282/journal.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moser, H., Schmid, U. (2011). Reconciling Fault-Tolerant Distributed Algorithms and Real-Time Computing. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-22212-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22211-5
Online ISBN: 978-3-642-22212-2
eBook Packages: Computer ScienceComputer Science (R0)