Abstract
We study the problem of locating a particularly dangerous node, the so-called black hole in a synchronous anonymous ring network with mobile agents. A black hole destroys all mobile agents visiting that node without leaving any trace. Unlike most previous research on the black hole search problem which employed a colocated team of agents, we consider the more challenging scenario when the agents are identical and initially scattered within the network. Moreover, we solve the problem with agents that have constant-sized memory and carry a constant number of identical tokens, which can be placed at nodes of the network. In contrast, the only known solutions for the case of scattered agents searching for a black hole, use stronger models where the agents have non-constant memory, can write messages in whiteboards located at nodes or are allowed to mark both the edges and nodes of the network with tokens.
We are interested in the minimum resources (number of agents and tokens) necessary for locating all links incident to the black hole. In fact, we provide matching lower and upper bounds for the number of agents and the number of tokens required for deterministic solutions to the black hole search problem, in oriented or unoriented rings, using movable or unmovable tokens.
Part of this work was done while E. Markou was visiting the LIF research laboratory in Marseille, France. Authors J. Chalopin, S. Das and A. Labourel are partially supported by ANR projects SHAMAN and ECSPER.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for black hole search with scattered agents in synchronous rings. ArXiv Preprint (arXiv:1104.5076v1) (2011)
Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)
Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006)
Czyzowicz, J., Dobrev, S., Kralovic, R., Miklik, S., Pardubska, D.: Black hole search in directed graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)
Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2,3), 229–242 (2006)
Dobrev, S., Flocchini, P., Kralovic, R., Prencipe, G., Ruzicka, P., Santoro, N.: Optimal search for a black hole in common interconnection networks. Networks 47(2), 61–71 (2006)
Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring a dangerous unknown graph using tokens. In: Proceedings of 5th IFIP International Conference on Theoretical Computer Science, pp. 131–150 (2006)
Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1), 1–19 (2006)
Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)
Dobrev, S., Kralovic, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)
Dobrev, S., Santoro, N., Shi, W.: Scattered black hole search in an oriented ring using tokens. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium, pp. 1–8 (2007)
Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black hole in an un-oriened ring with tokens. International Journal of Foundations of Computer Science 19(6), 1355–1372 (2008)
Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal black hole search with pure tokens. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 227–241. Springer, Heidelberg (2008)
Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: Proceedings of IEEE International Symposium on Parallel & Distributed Processing, pp. 1–10 (2009)
Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. Theoretical Computer Science 384(2-3), 201–221 (2007)
Kosowski, A., Navarra, A., Pinotti, C.: Synchronization helps robots to detect black holes in directed graphs. In: Proceedings of 13th International Conference on Principles of Distributed Systems, pp. 86–98 (2009)
Kràlovic, R., Miklìk, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 156–167. Springer, Heidelberg (2010)
Shannon, C.E.: Presentation of a maze-solving machine. In: Proceedings of 8th Conference of the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)
Shi, W.: Black hole search with tokens in interconnected networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chalopin, J., Das, S., Labourel, A., Markou, E. (2011). Tight Bounds for Scattered Black Hole Search in a Ring. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-22212-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22211-5
Online ISBN: 978-3-642-22212-2
eBook Packages: Computer ScienceComputer Science (R0)
