Clustering Recommenders in Collaborative Filtering Using Explicit Trust Information

  • Georgios Pitsilis
  • Xiangliang Zhang
  • Wei Wang
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 358)

Abstract

In this work, we explore the benefits of combining clustering and social trust information for Recommender Systems. We demonstrate the performance advantages of traditional clustering algorithms like k-Means and we explore the use of new ones like Affinity Propagation (AP). Contrary to what has been used before, we investigate possible ways that social-oriented information like explicit trust could be exploited with AP for forming clusters of high quality. We conducted a series of evaluation tests using data from a real Recommender system Epinions.com from which we derived conclusions about the usefulness of trust information in forming clusters of Recommenders. Moreover, from our results we conclude that the potential advantages in using clustering can be enlarged by making use of the information that Social Networks can provide.

Keywords

Social Trust Clustering Recommender Systems Epinions.com Affinity Propagation 

References

  1. 1.
    Arthur, D., Vassilvitskii, S.: k-means++: The Advantages of Careful Seeding. In: Proc. of Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia (2007)Google Scholar
  2. 2.
    O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proc. of 10th International Conference on Intelligent User Interfaces (IUI 2005), pp. 167–174. ACM, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Frey, B., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315, 972–976 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM conference on Electronic commerce (EC 2000), pp. 158–167. ACM, New York (2000)CrossRefGoogle Scholar
  5. 5.
    DuBois, T., Golbeck, J., Kleint, J., Srinivasan, A.: Improving Recommendation Accuracy by Clustering Social Networks with Trust. In: ACM RecSys 2009 Workshop on Recommender Systems & the Social Web, New York (2009)Google Scholar
  6. 6.
    DuBois, T., Golbeck, J., Srinivasan, A.: Rigorous Probabilistic Trust-Inference with Applications to Clustering. In: Proc. of 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2009), vol. 01, pp. 655–658. IEEE Computer Society, Washington, DC, USA (2009)CrossRefGoogle Scholar
  7. 7.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Recommender Systems for Large-Scale E-Commerce: Scalable Neighborhood Formation Using Clustering. In: The Fifth International Conference on Computer and Information Technology, ICCIT 2002 (2002)Google Scholar
  8. 8.
    Lathia, N., Hailes, S., Capra, L.: Trust-Based Collaborative Filtering in Trust Management II. In: IFIP International Federation for Information Processing, vol. 263, pp. 119–134. Springer, Boston (2008)Google Scholar
  9. 9.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Simoudis, E., Han, J., Fayyad, U. (eds.) Proc Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)Google Scholar
  10. 10.
    Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kaufman, J., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L Norm. Elsevier, Amsterdam (1987)Google Scholar
  12. 12.
    MacQueen, J.B.: Some Methods for Classification and Analysis of MultiVariate Observations. In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)Google Scholar
  13. 13.
    Truong, K., Ishikawa, F., Honiden, S.: Improving Accuracy of Recommender System by Item Clustering. IEICE - Trans. Inf. Syst. E90-D 9, 1363–1373 (2007)CrossRefGoogle Scholar
  14. 14.
    A cooperative environment for the scientific research of trust metrics on social networks, http://www.trustlet.org/ (retrieved May 2009)
  15. 15.
    Bollen, D., Knijnenburg, P.B., Willemsen, M.C., Graus, M.: Understanding choice overload in recommender systems. In: Proc. of fourth ACM conference on Recommender systems (RecSys 2010), pp. 63–70. ACM, New York (2010)CrossRefGoogle Scholar
  16. 16.
    Wang, W., Zhang, X., Pitsilis, G.: Abstracting audit data for lightweight intrusion detection. In: Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 201–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Dechter, R., Kearns, M., Sutton, R. (eds.) Proc. 18th National Conference on Artificial Intelligence, pp. 187–192. American Association for Artificial Intelligence, Menlo Park (2002)Google Scholar
  18. 18.
    Walter, F., Battiston, S., Schweitzer, F.: Coping with Information Overload through Trust-Based Networks. In: Helbing, D. (ed.) Managing Complexity: Insights, Concepts, Applications, vol. 32, pp. 273–300. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems (RecSys 2007), pp. 17–24. ACM, New York (2007)CrossRefGoogle Scholar
  20. 20.
    Josang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9(3), 279–311 (2001)MathSciNetGoogle Scholar
  21. 21.
    Avesani, P., Massa, P., Tiella, R.: A trust-enhanced recommender system application: Moleskiing. In: Liebrock, L.M. (ed.) Proc. of 2005 ACM symposium on Applied computing (SAC 2005), pp. 1589–1593. ACM, New York (2005)CrossRefGoogle Scholar
  22. 22.
    Liu, H., Lim, E., Lauw, H.W., Le, M.-T., Sun, A., Srivastava, J., Kim, Y.A.: Predicting trusts among users of online communities: an epinions case study. In: Proc. of 9th ACM conference on Electronic commerce (EC 2008), pp. 310–319. ACM, New York (2008)CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Li, P., Zheng, Y., Sun, M.: Community Detection by Affinity Propagation, Technical Reports No. 001, 200, Dept. of Computer Science and Technology, Tsinghua University,Beijing,China (2008)Google Scholar
  24. 24.
    Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proc. of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR 1999), pp. 230–237. ACM, New York (1999)CrossRefGoogle Scholar
  25. 25.
    Jaccard, P.: Bulletin de la Société Vaudoise des Sciences Naturelles. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines 37, 241–272 (1901)Google Scholar

Copyright information

© International Federation for Information Processing 2011

Authors and Affiliations

  • Georgios Pitsilis
    • 1
  • Xiangliang Zhang
    • 2
  • Wei Wang
    • 3
  1. 1.Faculty of Science, Technology and CommunicationUniversité du LuxembourgLuxembourg
  2. 2.Division of MCSEKing Abdullah University of Science and Technology (KAUST)Saudi Arabia
  3. 3.Interdisciplinary Centre for Security, Reliability and Trust (SnT Centre)Université du LuxembourgLuxembourg

Personalised recommendations