Longitude: A Privacy-Preserving Location Sharing Protocol for Mobile Applications

  • Changyu Dong
  • Naranker Dulay
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 358)


Location sharing services are becoming increasingly popular. Although many location sharing services allow users to set up privacy policies to control who can access their location, the use made by service providers remains a source of concern. Ideally, location sharing providers and middleware should not be able to access users’ location data without their consent. In this paper, we propose a new location sharing protocol called Longitude that eases privacy concerns by making it possible to share a user’s location data blindly and allowing the user to control who can access her location, when and to what degree of precision. The underlying cryptographic algorithms are designed for GPS-enabled mobile phones. We describe and evaluate our implementation for the Nexus One Android mobile phone.


Stream Cipher Location Privacy Bilinear Pairing Cryptographic Operation Location Sharing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Yahoo fire eagle,
  3. 3.
  4. 4.
    Raphael, J.: Three Reasons Why I Won’t Be Using Google Latitude (2009),
  5. 5.
    Turoczy, R.: Google latitude: Ready to tell your friends (and google) where you are? (2009),
  6. 6.
  7. 7.
    Tang, K.P., Lin, J., Hong, J.I., Siewiorek, D.P., Sadeh, N.: Rethinking location sharing: Exploring the implications of social-driven vs. purpose-driven location sharing. In: UbiComp (2010)Google Scholar
  8. 8.
    Tsai, J.Y., Kelley, P.G., Cranor, L.F., Sadeh, N.: Location-sharing technologies: Privacy risks and controls (2010),
  9. 9.
    Beresford, A., Stajano, F.: Location privacy in pervasive computing. Pervasive Computing, IEEE 2(1), 46–55 (2003)CrossRefGoogle Scholar
  10. 10.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: MobiSys (2003)Google Scholar
  11. 11.
    Hashem, T., Kulik, L.: Safeguarding location privacy in wireless ad-hoc networks. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 372–390. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Zhong, G., Hengartner, U.: A distributed k-anonymity protocol for location privacy. In: IEEE International Conference on Pervasive Computing and Communications PerCom 2009, pp. 1–10 (9-13, 2009)Google Scholar
  13. 13.
  14. 14.
    Langheinrich, M.: A privacy awareness system for ubiquitous computing environments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 237–245. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Freudiger, J., Neu, R., Hubaux, J.P.: Private sharing of user location over online social networks. In: 3rd Hot Topics in Privacy Enhancing Technologies, HotPETs 2010 (2010)Google Scholar
  16. 16.
    Ruppel, P., Treu, G., Küpper, A., Linnhoff-Popien, C.: Anonymous user tracking for location-based community services. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 116–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: Three protocols for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 62–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Mascetti, S., Freni, D., Bettini, C., Wang, X.S., Jajodia, S.: Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies. CoRR abs/1007.0408 (2010)Google Scholar
  19. 19.
    Siksnys, L., Thomsen, J.R., Saltenis, S., Yiu, M.L.: Private and flexible proximity detection in mobile social networks. In: Mobile Data Management, pp. 75–84 (2010)Google Scholar
  20. 20.
    Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)CrossRefGoogle Scholar
  22. 22.
    Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for untrusted servers. In: DBSec., pp. 127–143 (2008)Google Scholar
  23. 23.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Android platform,
  25. 25.
    Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of tate pairing in projective coordinate over general characteristic fields. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Scott, M.: Computing the tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    NIST: NIST FIPS-197: Specification for the Advanced Encryption StandardGoogle Scholar
  28. 28.
    NIST: NIST SP 800-38A: Recommendation for Block Cipher Modes of OperationGoogle Scholar
  29. 29.
    Fournel, N., Minier, M., Ubéda, S.: Survey and benchmark of stream ciphers for wireless sensor networks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 202–214. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Guo, F., Mu, Y., Chen, Z.: Identity-based online/Offline encryption. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of CODES+ISSS (2010)Google Scholar
  33. 33.
    IEEE: IEEE P1363: Standard specifications for public key cryptographyGoogle Scholar
  34. 34.
    Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)Google Scholar
  35. 35.
  36. 36.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. 37.
    Popa, R.A., Zeldovich, N., Balakrishnan, H.: Cryptdb: A practical encrypted relational dbms. Technical Report MIT-CSAIL-TR-2011-005, MIT (2011)Google Scholar

Copyright information

© International Federation for Information Processing 2011

Authors and Affiliations

  • Changyu Dong
    • 1
  • Naranker Dulay
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations