Skip to main content

Fractal Analysis of Surface Electromyography (EMG) Signal for Identify Hand Movements Using Critical Exponent Analysis

  • Conference paper
Software Engineering and Computer Systems (ICSECS 2011)

Abstract

Recent advances in non-linear analysis have led to understand the complexity and self-similarity of surface electromyography (sEMG) signal. This research paper examines usage of critical exponent analysis method (CEM), a fractal dimension (FD) estimator, to study properties of the sEMG signal and to use these properties to identify various kinds of hand movements for prosthesis control and human-machine interface. The sEMG signals were recorded from ten healthy subjects with seven hand movements and eight muscle positions. Mean values and coefficient of variations of the FDs for all the experiments show that there are larger variations between hand movement types but there is small variation within hand movement. It also shows that the FD related to the self-affine property for the sEMG signal extracted from different hand activities 1.944~2.667. These results have also been evaluated and displayed as a box plot and analysis-of-variance (p value). It demonstrates that the FD value is suitable for using as an EMG feature extraction to characterize the sEMG signals compared to the commonly and popular sEMG feature, i.e., root mean square (RMS). The results also indicate that the p values of the FDs for six muscle positions was less than 0.0001 while that of the RMS, a candidate feature, ranged between 0.0003-0.1195. The FD that is computed by the CEM can be applied to be used as a feature for different kinds of sEMG application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merletti, R., Parker, P.: ELECTRO-MYOGRAPHY Physiology, Engineering, and Noninvasive Applications. John Wiley & Sons, Inc, Hoboken (2004)

    Book  Google Scholar 

  2. Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30, 459–485 (2002)

    Article  Google Scholar 

  3. Oskoei, M.A., Hu, H.: Myoelectric control systems—A survey. Biomed. Signal Process. Control 2, 275–294 (2007)

    Google Scholar 

  4. Boostani, R., Moradi, M.H.: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas. 24, 309–319 (2003)

    Article  Google Scholar 

  5. Englehart, K., Hudgins, B., Parker, P.A.: A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 48, 302–311 (2001)

    Article  Google Scholar 

  6. Tkach, D., Huang, H., Kuiken, T.A.: Study of stability of time-domain features for electromyographic pattern recognition. J. NeuroEng. Rehabil. 7, 21 (2010)

    Article  Google Scholar 

  7. Lei, M., Wang, Z., Feng, Z.: Detecting nonlinearity of action surface EMG signal. Phys. Lett. A 290, 297–303 (2001)

    Article  MATH  Google Scholar 

  8. Meng, Y., Liu, Y., Liu, B.: Test nonlinear determinacy of Electromyogram. In: 27th Annual Conference of the IEEE Engineering in Medicine and Biology, pp. 4592–4595. IEEE Press, New York (2005)

    Google Scholar 

  9. Padmanabhan, P., Puthusserypady, S.: Nonlinear analysis of EMG signals – A chaotic approach. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 608–611. IEEE Press, New York (2004)

    Chapter  Google Scholar 

  10. Arjunan, S.P., Kumar, D.K.: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J. Neuro. Eng. Rehabil. 7, 53 (2010)

    Article  Google Scholar 

  11. Gitter, J.A., Czerniecki, M.J.: Fractal analysis of the electromyographic interference pattern. J. Neurosci. Methods 58, 103–108 (1995)

    Article  Google Scholar 

  12. Gupta, V., Suryanarayanan, S., Reddy, N.P.: Fractal analysis of surface EMG signals from the biceps. Int. J. Med. Inf. 45, 185–192 (1997)

    Article  Google Scholar 

  13. Hu, X., Wang, Z.-Z., Ren, X.-M.: Classification of surface EMG signal with fractal dimension. J. Zhejiang Univ. Sci. B 6, 844–848 (2005)

    Article  Google Scholar 

  14. Nakagawa, M.: A critical exponent method to evaluate fractal dimensions of self-affine data. J. Phys. Soc. Jpn. 62, 4233–4239 (1993)

    Article  Google Scholar 

  15. Petry, A., Barone, D.A.C.: Speaker identification using nonlinear dynamical features. Chaos Solitons Fractals 13, 221–231 (2002)

    Article  MATH  Google Scholar 

  16. De Oliveira, L.P.L., Roque, W.L., Custódio, R.F.: Lung sound analysis with time-dependent fractal dimensions. Chaos Solitons Fractals 10, 1419–1423 (1999)

    Article  MATH  Google Scholar 

  17. Sabanal, S., Nakagawa, M.: The fractal properties of vocal sounds and their application in the speech recognition model. Chaos Solitons Fractals 7, 1825–1843 (1996)

    Article  Google Scholar 

  18. Nimkerdphol, K., Nakagawa, M.: Effect of sodium hypochlorite on Zebrafish swimming behavior estimated by fractal dimension analysis. J. Biosci. Bioeng. 105, 486–492 (2008)

    Article  Google Scholar 

  19. Nimkerdphol, K., Nakagawa, M.: 3D locomotion and fractal analysis of Goldfish for acute toxicity bioassay. Int. J. Biol. Life Sci. 2, 180–185 (2006)

    Google Scholar 

  20. Phothisonothai, M., Nakagawa, M.: EEG-based fractal analysis of different motor imagery tasks using critical exponent method. Int. J. Biol. Life Sci. 1, 175–180 (2005)

    Google Scholar 

  21. Phothisonothai, M., Nakagawa, M.: Fractal-based EEG data analysis of body parts movement imagery tasks. J. Physiol. Sci. 57, 217–226 (2007)

    Article  Google Scholar 

  22. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. J. Comput. 1, 71–80 (2009)

    Google Scholar 

  23. Chan, A.D.C., Green, G.C.: Myoelectric control development toolbox. In: 30th Conference of Canadian Medical & Biological Engineering Society, M0100 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phinyomark, A., Phothisonothai, M., Suklaead, P., Phukpattaranont, P., Limsakul, C. (2011). Fractal Analysis of Surface Electromyography (EMG) Signal for Identify Hand Movements Using Critical Exponent Analysis. In: Zain, J.M., Wan Mohd, W.M.b., El-Qawasmeh, E. (eds) Software Engineering and Computer Systems. ICSECS 2011. Communications in Computer and Information Science, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22191-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22191-0_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22190-3

  • Online ISBN: 978-3-642-22191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics