Skip to main content

Near-Space Vehicles: Remote Sensing Advantages

  • Chapter
  • First Online:
  • 1142 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Near-space provides a promise for future remote sensing applications. Instead of concentrating payloads, in this chapter we give a brief overview of the basic types of near-space vehicles currently in use, in active development, or envisioned. Their advantages, limitations, and vulnerabilities for microwave remote sensing are investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zavala, A.A., Lius, J.C.R., Antonio, D.P.J.: High-Altitude Platforms for Wiress Communications. Wiley, Hoboken (2008)

    Book  Google Scholar 

  2. Grace, D., Mihael, M.: Broadband Communications via High Altitude Platforms. Wiley, Hoboken (2011)

    Google Scholar 

  3. Wang, W.Q.: Near-space vehicles: supply a gap between satellites and airplanes for remote sensing. IEEE Aerosp. Electron. Syst. Mag. 26, 4–9 (2011)

    Article  Google Scholar 

  4. Tomme, E.B.: The paradigm shift of effects-based space: near-space as a combat space effects enabler. http://www.airpower.au.af.mi (2009). Accessed May 2010

  5. Djuknic, G.M., Freidendelds, J., Okunev, Y.: Establishing wireless communications severices via high-altitude aeronautical platforms: a concept whose time has come? IEEE Commun. Mag. 35, 128–135 (1997)

    Article  Google Scholar 

  6. Tozer, T.C., Grace, D.: High-altitude platforms for wireless communications. IEE Electron. Commun. Eng. J. 13, 127–137 (2001)

    Article  Google Scholar 

  7. Grace, D., Daly, N.E., Tozer, T.C., Burrand, A.G., Pearce, D.A.J.: Providing multimedia communications from high altitude platforms. Int. J. Sat. Commun. 19, 559–580 (2001)

    Article  Google Scholar 

  8. Avagnina, D., Dovis, F., Ghiglione, A., Mulassano, P.: Wireless networks based on high-altitude platforms for the provision of integrated navigation/communication services. IEEE Commun. Mag. 40, 119–125 (2002)

    Article  Google Scholar 

  9. Jaroslav, H., David, G., Pavel, P.: Effect of antenna power roll-off on the performance of 3G cellular systems from high altitude platforms. IEEE Trans. Aerosp. Electon. Syst. 46, 1468–1477 (2010)

    Article  Google Scholar 

  10. Fidler, F., Knapek, M., Horwath, J., Leeb, W.R.: Optical communications for high-altitude platforms. IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010)

    Article  Google Scholar 

  11. Anastasopoulos, M.P., Cottis, P.G.: High altitude platform networks: a feedback suppression algorithm for reliable multicast/broadcast services. IEEE Trans. Wireless Commun. 8, 1639–1643 (2009)

    Article  Google Scholar 

  12. Celcer, T., Javornik, T., Mohorcic, M., Kandus, G.: Virtual multiple input multiple output in multiple high-altitude platform constellations. IET Commun. 3, 1704–1715 (2009)

    Article  Google Scholar 

  13. Liu, Y., Grace, D., Mitchell, P.D.: Exploiting platform diversity for QoS improvement for users with different high altitude platform availability. IEEE Trans. Wireless Commun. 8, 196–203 (2009)

    Article  Google Scholar 

  14. Holis, J., Pechac, P.: Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas. IEEE Trans. Antenna Propag. 56, 1078–1084 (2008)

    Article  Google Scholar 

  15. Likitthanasate, P., Grace, D., Mitchell, P.D.: Spectrum etiquettes for terrestrial and high-altitude platform-based cognitive radio systems. IET Commun. 2, 846–855 (2008)

    Article  Google Scholar 

  16. White, G.P., Zakharov, Y.V.: Data communications to trains from high-altitude platforms. IEEE Trans. Vehicular. Tech. 56, 2253–2266 (2007)

    Article  Google Scholar 

  17. Karapantazis, S., Pavlidou, F.: Broadband communications via high-altitude platforms: a survey. IEEE Commun. Survey Tutorial 7, 2–31 (2005)

    Article  Google Scholar 

  18. Karapantazis, S., Pavlidou, F.: The role of high-altitude platforms in beyond 3G networks. IEEE Wireless Commun. 12, 33–41 (2005)

    Article  Google Scholar 

  19. Grace, D., Thornton, J., Chen, G., White, G.P., Tozer, T.C.: Improving the system capacity of broadband services using multiple high-altitude platforms. IEEE Trans. Wireless Commun. 4, 700–709 (2005)

    Article  Google Scholar 

  20. Lee, Y., Ye, H.: Sky station statospheric telecommunications systems, a high speed low latency switched wireless network. In: Proceedings of 17th AIAA International Communication Satellite System Conference, pp. 25–32, Yokohama, Japan (1998)

    Google Scholar 

  21. Ilcev, S.D.: Global Mobile Satellite Communications for Maritime, Land and Aeronautical Applications. Springer, Berlin (2005)

    Google Scholar 

  22. Oodo, M., Tsuji, H., Miura, R., Maruyama, M., Suzuki, M., Nishi, Y., Sasamoto, H.: Experiments on IMT-2000 using unmanned solar-powered aircraft at an altitude of 20 km. IEEE Trans. Vehicular Technol. 54, 1278–1294 (2005)

    Article  Google Scholar 

  23. Wierzbanowski, T.: Unmanned aircraft systems will provide access to the statosphere. RF Des. 60, 12–16 (2006)

    Google Scholar 

  24. http://www.lindstrand.co.u. Accessed Dec 2010

  25. Grace, D., Thornton, J., White, G.P., Spillard, C.L., Pearce, D.A.J., Mohoreie, M., Javornik, T., Falletti, E., Delgado-Penin, J.A., Bertran, E.: The European HeliNet broadband communications application—an update on progress. In: Proceedings of 4th Japanese Stratospheric Platform Systems Workshop, pp. 90–98, Tokyo, Japan (2003)

    Google Scholar 

  26. Lopresti, L., Mondin, M., Orsi, S., Pent, M.: Heliplat as a GSM base station: a feasibility study. Eur. Space Agency Spec. Publ. 447, 581–54 (1998)

    Google Scholar 

  27. Grace, D., Mohorcic, M., Capstick, M.H., Pallavicini, M.B., Fitch, M.: Integrating users into the wider broadband network via high altitude platforms. IEEE Trans. Wireless Commun. 12, 98–105 (2005)

    Article  Google Scholar 

  28. Yokomaku, Y.: Overview of stratospheric platform airship R&D program in Japan. In: Proceedings of 2nd Stratospheric Platform Systems Workshop, pp. 15–23, Akron, USA (2000)

    Google Scholar 

  29. Lee, Y.G., Kim, D.M., Yeom, C.H.: Development of Korean high altitude platform systems. Int. J. Wireless Inf. Network 13, 31–42 (2006)

    Article  Google Scholar 

  30. Jiang, B., Gao, Z.F., Shi, P., Xu, Y.F.: Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18, 1000–1007 (2010)

    Article  Google Scholar 

  31. Hu, S.G., Fang, Y.W., Xiao, B.S., Wu, Y.L., Mou, D.: Near-space hypersonic vehicle longitudinal motion control based on Markov jump system theory. In: Proceedings of 8th World Congress Intelligent Control Automation, pp. 7067–7072, Jian, China (2010)

    Google Scholar 

  32. Ji, Y.H., Zong, Q., Dou, L.Q., Zhao, Z.S.: High-order sliding-mode observer for state estimation in a near-space hypersonic vehicle. In: Proceedings of 8th World Congress Intelligent Control Automation, pp. 2415–2418, Jian, China (2010)

    Google Scholar 

  33. He, N.B., Jiang, C.S., Gao, Q., Gong, C.L.: Terminal sliding mode control for near-space vehicle. In: Proceedings of 29th Chinese Control Conference, pp. 2281–2283, Beijing, China (2010)

    Google Scholar 

  34. Wang, W.Q., Cai, J.Y., Peng, Q.C.: Near-space microwave radar remote sensing: potential and challenge analysis. Remote Sens. 2, 717–739 (2010)

    Article  Google Scholar 

  35. Willis, N.J.: Bistatic Radar. Artech House, Norwood, MA (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Qin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Wen-Qin Wang

About this chapter

Cite this chapter

Wang, WQ. (2011). Near-Space Vehicles: Remote Sensing Advantages. In: Near-Space Remote Sensing. SpringerBriefs in Electrical and Computer Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22188-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22188-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22187-3

  • Online ISBN: 978-3-642-22188-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics