Skip to main content

High-Accuracy Atomic Force Microscope

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 413))

Abstract

We have designed, built, and tested a high-accuracy atomic force microscope (HAFM) to be used for dimensional metrology. The HAFM is specialized for use in conjunction with our Sub-Atomic Measuring Machine (SAMM), serving as the surface measurement probe with 0.1 nm resolution over the SAMM travel range of 25 mm by 25 mm by 100 μm. In this configuration, all lateral scanning is provided by the SAMM, and so the HAFM is designed to move its probe with a single degree of freedom motion normal to the sample of interest. This sample-normal probe motion (Z-axis) is guided in the HAFM by symmetric monolithic flexures which are designed for high thermal stability and minimum lateral error motion. A piezoelectric stack drives the HAFMZ-axis over a range of 20 μm. The HAFM uses a commercially available self-sensing quartz-tuning-fork-based AFM probe, which is operated in constant-amplitude self-resonance via electronics described herein. In this configuration, the sample-probe separation is sensed via frequency shift of the probe resonance. The probe-sample separation is controlled using a discretetime surface-tracking controller implemented on a field-programmable gate array (FPGA). The controller tracks the surface by actuating the piezo to maintain a constant self-resonance period. To avoid spurious mixing, the controller’s sampling is made synchronous to the self-resonance oscillations. Three capacitive displacement sensors directly measure the surface trackingmotion, providing a high-accuracymeasurement of surface height. We have experimentally demonstrated surface tracking control with 100 Hz unity-gain crossover frequency, 70 degrees phase margin, and 0.12-nm RMS noise in a 100-Hz measurement bandwidth. We have also used the HAFM to measure calibration gratings and the surface of a freshly cleaved sanded Mica sample. The HAFM probe has recently been installed on the SAMM stage; we show a preliminary image taken using this combination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, T., Staufer, U., de Rooji, N.: Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy. Rev. Sci. Instrum. 74, 112–117 (2003)

    Article  Google Scholar 

  2. Albrecht, T., Horne, D., Rugar, D.: Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991)

    Article  Google Scholar 

  3. Amin-Shahidi, D., Ljubicic, D., Overcash, J., Hocken, R., Trumper, D.: High-accuracy atomic force microscope for dimensional metrology. In: Proceedings of ASPE Annual Meeting, Atlanta, GA (2010)

    Google Scholar 

  4. Atia, W.A., Christopher, C.C.: A phase-locked shear-force microscope for distance regulation in near-field optical microscopy. Appl. Phys. Lett. 70, 405–407 (1997)

    Article  Google Scholar 

  5. Byl, M., Ludwick, S., Trumper, D.: A loop-shaping perspective for tuning adaptive feedforward controllers. Precis. Eng. J. 29(1), 27–40 (2005)

    Article  Google Scholar 

  6. Cattell, J.: Adaptive feedforward cancelation viewed from an oscillator amplitude control perspective. Master’s thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  7. Dai, G., Pohlenz, F., Danzebrink, H., Xu, M., Hasche, K., Wilkening, G.: Metrological large range scanning probe microscope. Rev. Sci. Instrum. 75, 962–969 (2004)

    Article  Google Scholar 

  8. Dai, G., Wolff, H., Pohlenz, F., Danzebrink, H.U.: A metrological large range atomic force microscope with improved performance. Rev. Sci. Instrum. 80 (2009)

    Google Scholar 

  9. Danzebrink, H.U., Koenders, L., Wilkening, G., Yacoot, A., Kunzmann, H.: Advances in scanning force microscopy for dimensional metrology. Annals CIRP 55, 841–878 (2006)

    Article  Google Scholar 

  10. Edwards, H., Taylor, L., Duncan, W.: Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor. J. Appl. Phys. 82, 980–984 (1997)

    Article  Google Scholar 

  11. Garcia, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Article  MATH  Google Scholar 

  12. Halbach, K.: Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods 169, 1–10 (1980)

    Article  Google Scholar 

  13. Halbach, K.: Physical and optical properties of rare earth cobalt magnets. Nuclear Instruments and Methods 187, 109–117 (1981)

    Article  Google Scholar 

  14. Holmes, M.: Analysis and design of a magnetically-suspended precision motion control stage. Master’s thesis, University of North Carolina at Charlotte (1994)

    Google Scholar 

  15. Holmes, M.: Long-range scanning stage. PhD thesis, University of North Carolina at Charlotte (1998)

    Google Scholar 

  16. Holmes, M., Trumper, D.: Magnetic/fluid bearing stage for atomic-scale motion control. Precis. Eng. J. 18, 38–49 (1996)

    Article  Google Scholar 

  17. Holmes, M., Trumper, D., Hocken, R.: Atomic-scale precision motion control stage (the angstrom stage). CIRP Annals 44, 455–460 (1995)

    Article  Google Scholar 

  18. Holmes, M., Hocken, R., Trumper, D.: The long-range scanning stage: a novel platform for scanned-probe microscopy. Precis. Eng. J. 24 (2000)

    Google Scholar 

  19. Kim, W., Trumper, D., Lang, J.: Modeling and vector control of a planar magnetic levitator. Precis. Eng. J. 4, 553–564 (1998)

    Google Scholar 

  20. Konkola, P., Chen, C., Heilmann, R., Joo, C., Montoya, J., Chang, C.H., Schattenburg, M.: Nanometer-level repeatable metrology using the nanoruler. J. Vac. Sci. Technol. B 21, 3097–3101 (2003)

    Article  Google Scholar 

  21. Kramar, J.A.: Nanometer resolution metrology with the molecular measuring machine. Meas. Sci. Technol. 16, 2121–2128 (2005)

    Article  Google Scholar 

  22. Ljubicic, D.L.: Flexural based high accuracy atomic force microscope. Master’s thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  23. Ludwick, S.: Modeling and control of six degree of freedom magnetic/fluidic motion control stage. Master’s thesis, Massachusetts Institute of Technology (1996)

    Google Scholar 

  24. Ludwick, S., Trumper, D., Holmes, M.: Six degree of freedom magnetic/fluidic motion control stage. IEEE Trans. Control Syst. Technol. 4, 553–564 (1996)

    Article  Google Scholar 

  25. Mazzeo, A.: Accurate capacitive metrology for atomic force microscopy. Master’s thesis, Massachusetts Institute of Technology (2005)

    Google Scholar 

  26. NANOSENSORS, Akiyama-Probe (A-Probe) technical guide. (2009), http://www.akiyamaprobe.com

  27. Overcash, J., Hocken, R., CG Stroup, J.: Noise reduction and disturbance rejection at the sub-nanometer level. In: Proceedings of ASPE Annual Meeting, Monterey, CA (2009)

    Google Scholar 

  28. Paesler, M., Moyer, P.: Near-Field Optics: Theory, Instrumentation, and Applications. Wiley, Chichester (1996)

    Google Scholar 

  29. Roberge, J.K.: Operational Amplifiers: Theory and Practice. Wiley, Chichester (1975)

    Google Scholar 

  30. Rychen, J., Ihn, T., Studerus, P., Herrmann, A., Ensslin, K.: A low-temperature dynamic mode scanning force microscope operating in high magnetic fields. Rev. Sci. Instrum. 70, 2765–2768 (1999)

    Article  Google Scholar 

  31. Stein, A.: A metrological atomic force microscope. Master’s thesis, Massachusetts Institute of Technology (2002)

    Google Scholar 

  32. Trumper, D.: Levitation linear motors for precision portioning. IEEE J. Trans. Elec. Info. Syst. 10 (2006)

    Google Scholar 

  33. Trumper, D., Kim, W.J., Williams, M.: Design and analysis framework for linear permanent magnet machines. IEEE Trans. Ind. Appl. 32, 371–379 (1996)

    Article  Google Scholar 

  34. Wang, C., Hocken, R., Trumper, D.: Dynamics and control of the uncc/mit sub-atomic measuring machine. CIRP Annals - Manufacturing Technology 50, 373–376 (2001)

    Article  Google Scholar 

  35. Zhao, Y., Trumper, D., Heilmann, R., Schattenburg, M.: Optimization and temperature mapping of an ultra-high thermal stability environmental enclosure. Precis. Eng. J. 34(1), 164–170 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trumper, D.L., Hocken, R.J., Amin-Shahidi, D., Ljubicic, D., Overcash, J. (2011). High-Accuracy Atomic Force Microscope. In: Eleftheriou, E., Moheimani, S.O.R. (eds) Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences, vol 413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22173-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22173-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22172-9

  • Online ISBN: 978-3-642-22173-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics