Finite Deformation Thermomechanical Contact Homogenization Framework

  • İlker Temizer
  • Peter Wriggers
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 58)


A finite deformation homogenization framework is developed to predict the macroscopic thermal response of contact interfaces between rough surface topographies. The overall homogenization framework transfers macroscopic contact variables such as surfacial stretch, pressure and heat flux as boundary conditions on a test sample within a micromechanical interface testing procedure. An analysis of the thermal dissipation within the test sample reveals a thermodynamically consistent identification for the macroscopic thermal contact conductance parameter that enables the solution of a homogenized thermomechanical contact boundary value problem based on standard computational approaches. The homogenized contact response effectively predicts a temperature jump across the macroscale contact interface.


Boundary Value Problem Thermal Contact Contact Interface Temperature Jump Thermal Contact Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayers, G.H.: Cylindrical thermal contact conductance. Master’s Thesis, Texas A&M University, College Station, Texas, USA (2003)Google Scholar
  2. 2.
    Bahrami, M., Yovanovich, M.M., Marotta, E.E.: Thermal joint resistance of polymer-metal rough interfaces. Journal of Electronic Packaging 128, 23–29 (2006)CrossRefGoogle Scholar
  3. 3.
    Chadwick, P., Creasy, C.F.M.: Modified entropic elasticity of rubberlike materials. Journal of the Mechanics and Physics of Solids 32(5), 337–357 (1984)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chung, D.D.L.: Factors that goven the performance of thermal interface materials. Journal of Electronic Materials 38(1), 175–192 (2009)CrossRefGoogle Scholar
  5. 5.
    Gibbins, J.: Thermal contact resistance of polymer interfaces. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2006)Google Scholar
  6. 6.
    Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2001)Google Scholar
  7. 7.
    Jackson, R.L., Bhavnani, S.H., Ferguson, T.P.: A multiscale model of thermal contact resistance between rough surfaces. Journal of Heat Transfer 130, 81301 (2008)CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  9. 9.
    Madhusudana, C.V.: Thermal Contact Conductance. Springer, New York (1996)Google Scholar
  10. 10.
    Prasher, R.: Thermal interface materials: Historical perspective, status and future directions. Proceedings of the IEEE 94(8), 1571–1586 (2006)CrossRefGoogle Scholar
  11. 11.
    Prasher, R.S., Matayabas, J.C.: Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Transactions on Components and Packaging Technologies 27(4), 702–709 (2004)CrossRefGoogle Scholar
  12. 12.
    Sadowski, P., Stupkiewicz, S.: A model of thermal contact conductance at high real contact area fractions. Wear (2009), doi:10.1016/j.wear.2009.06.040Google Scholar
  13. 13.
    Salti, B., Laraqi, N.: 3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance. International Journal of Heat and Mass Transfer 42, 2363–2374 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Song, S., Yovanovich, M.M., Nho, K.: Thermal gap conductance of conforming surfaces in contact. Journal of Heat Transfer 115, 533–540 (1993)CrossRefGoogle Scholar
  15. 15.
    Temizer, I., Wriggers, P.: A multiscale contact homogenization technique for the modeling of third bodies in the contact interface. Computer Methods in Applied Mechanics and Engineering 198, 377–396 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Thompson, M.K.: A multi-scale iterative approach for finite element modeling of thermal contact resistance. PhD Thesis, Massachusetts Institute of Technology, Boston, Massachusetts, USA (2007)Google Scholar
  17. 17.
    Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Computer Methods in Applied Mechanics and Engineering 198, 1996–2008 (2009)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Zavarise, G., Borri-Brunetto, M., Paggi, M.: On the reliability of microscopical contact models. Wear 257, 229–245 (2004)CrossRefGoogle Scholar
  20. 20.
    Zavarise, G., Wriggers, P., Stein, E., Schrefler, B.A.: Real contact mechanisms and finite element formulation – A coupled thermomechanical approach. International Journal for Numerical Methods in Engineering 35, 767–785 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Zhang, X., Chong, P., Fujiwara, S., Fujii, M.: A new method for numerical simulation of thermal contact resistance in cylindrical coordinates. International Journal of Heat and Mass Transfer 47, 1091–1098 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Temizer, İ., Wriggers, P.: Thermal contact conductance characterization via computational contact homogenization: A finite deformation theory framework. International Journal for Numerical Methods in Engineering (1), 24–58, doi:10.1002/nme.2822Google Scholar
  23. 23.
    Temizer, I.: Thermomechanical contact homogenization with random rough surfaces and microscopic contact resistance. Tribology International 44, 114–124, doi:10.1016/j.triboint.2010.09.011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • İlker Temizer
    • 1
  • Peter Wriggers
    • 1
  1. 1.Institute of Continuum MechanicsLeibniz University of HannoverHannoverGermany

Personalised recommendations