Advertisement

On a Geometrically Exact Theory for Contact Interactions

  • Alexander Konyukhov
  • Karl Schweizerhof
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 58)

Abstract

The focus of the contribution is on the developments concerning an unified geometrical formulation of contact algorithms in a covariant form for various geometrical situations of contacting bodies leading to contact pairs: surface-to-surface, line-to-surface, point-to-surface, line-to-line, point-to-line, point-to-point. The computational contact algorithm will be considered in accordance with the geometry of contact bodies in a covariant form. This combination forms a geometrically exact theory of contact interaction. The contribution focuses on an overview of the literature and then presents in a review type the contributions of the authors on the topic.

Keywords

Contact Interaction Local Coordinate System Frictional Contact Covariant Form Contact Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alart, P., Heege, A.: Consistent tangent matrices of curved contact operators involving anisotropic friction. Revue Europeenne Des Elements Finis 4, 183–207 (1995)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Gurtin, M.E., Weissmueller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A 78, 1093–1109 (1998)CrossRefGoogle Scholar
  3. 3.
    Harnau, M., Konyukhov, A., Schweizerhof, K.: Algorithmic aspects in large deformation contact analysis using ‘Solid-Shell’ elements. Computers and Structures 83, 1804–1823 (2005)CrossRefGoogle Scholar
  4. 4.
    Heegaard, J.H., Curnier, A.: Geometric properties of 2D and 3D unilateral large slip contact operators. Computer Methods in Applied Mechanics and Engineering 131, 263–286 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Heege, A., Alart, P.: A frictional contact element for strongly curved contact problems. International Journal for Numerical Methods in Engineering 39, 165–184 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jones, R.E., Papadopoulos, P.: A geometric interpretation of frictional contact mechanics. Zeitschrift Für Angewandte Mathematik und Physik (ZAMP) 57(6), 1025–1041 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Konyukhov, A., Schweizerhof, K.: Contact formulation via a velocity description allowing efficiency improvements in frictionless contact analysis. Computational Mechanics 33, 165–173 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Konyukhov, A., Schweizerhof, K.: Covariant description for frictional contact problems. Computational Mechanics 35, 190–213 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Konyukhov, A., Schweizerhof, K.: Covariant description of contact interfaces considering anisotropy for adhesion and friction: Part 1. Formulation and analysis of the computational model. Computer Methods in Applied Mechanics and Engineering 196, 103–117 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Konyukhov, A., Schweizerhof, K.: Covariant description of contact interfaces considering anisotropy for adhesion and friction: Part 2. Linearization, finite element implementation and numerical analysis of the model. Computer Methods in Applied Mechanics and Engineering 196, 289–303 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Konyukhov, A., Schweizerhof, K.: A special focus on 2D formulations for contact problems using a covariant description. International Journal for Numerical Methods in Engineering 66, 1432–1465 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Konyukhov, A., Schweizerhof, K.: Symmetrization of various friction models based on an augmented Lagrangian approach. In: Wriggers, P., Nackenhorst, U. (eds.) IUTAM Symposium on Computational Contact Mechanics. IUTAM Bookseries, pp. 97–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Konyukhov, A., Vielsack, P., Schweizerhof, K.: On coupled models of anisotropic contact surfaces and their experimental validation. Wear 264(7/8), 579–588 (2008)CrossRefGoogle Scholar
  14. 14.
    Konyukhov, A., Schweizerhof, K.: On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering 197(33/40), 3045–3056 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Konyukhov, A., Schweizerhof, K.: Incorporation of contact for high-order finite elements in covariant form. Computer Methods in Applied Mechanics and Engineering 198, 1213–1223 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Konyukhov, A., Schweizerhof, K.: Geometrically exact covariant approach for contact between curves. Computer Methods in Applied Mechanics and Engineering 199, 2510–2531 (2010)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Krstulovic-Opara, L., Wriggers, P., Korelc, J.: A C1-continuous formulation for 3d finite deformation frictional contact. Computational Mechanics 29, 27–42 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Laursen, T.A.: Convected description in large deformation frictional contact problems. International Journal of Solids and Structures 31, 669–681 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Laursen, T.A., Simo, J.C.: A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems. International Journal for Numerical Methods in Engineering 35, 3451–3485 (1993)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Laursen, T.A.: Computational Contact and Impact Mechanics. Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer, Berlin (2002)zbMATHGoogle Scholar
  21. 21.
    Litewka, P.: Hermite polynomial smoothing in beam-to-beam frictional contact. Computational Mechanics 40, 815–826 (2007)zbMATHCrossRefGoogle Scholar
  22. 22.
    Litewka, P., Wriggers, P.: Contact between 3D beams with rectangular cross-sections. International Journal for Numerical Methods in Engineering 53, 2019–2042 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Litewka, P., Wriggers, P.: Frictional contact between 3D beams. Computational Mechanics 28, 26–39 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Montmitonnet, P., Hasquin, A.: Implementation of an anisotropic friction law in a 3D finite element model of hot rolling. In: Shen, S.-F., Dowson, P. (eds.) Proceedings of NUMIFORM 1995, pp. 301–306 (1995)Google Scholar
  25. 25.
    Parisch, H.: A consistent tangent stiffness matrix for three-dimensional nonlinear contact analysis. International Journal for Numerical Methods in Engineering 28, 1803–1812 (1989)zbMATHCrossRefGoogle Scholar
  26. 26.
    Parisch, H., Luebbing, C.: Ch. Luebbing. A formulation of arbitrarily shaped surface elements for three-dimensional large deformation contact with friction. International Journal for Numerical Methods in Engineering 40, 3359–3383 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Peric, D., Owen, D.R.J.: Computational model for 3-D contact problems with friction based on the penalty method. International Journal for Numerical Methods in Engineering 35, 1289–1309 (1992)zbMATHCrossRefGoogle Scholar
  28. 28.
    Simo, J.C., Laursen, T.A.: An Augmented Lagrangian treatment of contact problems involving friction. Computers and Structures 42, 97–116 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Simo, J.C., Wriggers, P., Schweizerhof, K., Taylor, R.L.: Finite deformation post-buckling analysis involving inelasticity and contact constraints. International Journal for Numerical Methods in Engineering 23, 779–800 (1986)zbMATHCrossRefGoogle Scholar
  30. 30.
    Stadler, M., Holzapfel, G.A., Korelc, J.: C n continuous modeling of smooth contact surfaces using nurbs and application to 2D problems. International Journal for Numerical Methods in Engineering 57, 2177–2203 (2003)zbMATHCrossRefGoogle Scholar
  31. 31.
    Wriggers, P., Simo, J.C.: A note on tangent stiffness for fully nonlinear contact problems. Communications in Applied Numerical Methods 1, 199–203 (1985)zbMATHCrossRefGoogle Scholar
  32. 32.
    Wriggers, P., Van, V., Stein, E.: Finite element formulation of large deformation impact-contact problem with friction. Computers and Structures 37, 319–331 (1990)zbMATHCrossRefGoogle Scholar
  33. 33.
    Wriggers, P., Zavarise, G.: On contact between three-dimensional beams undergoing large deflection. Communications in Numerical Methods in Engineering 13, 429–438 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wriggers, P.: Computational Contact Mechanics. John Wiley and Sons, Chichester (2002)Google Scholar
  35. 35.
    Zavarise, G., Wriggers, P.: Contact with friction between beams in 3D space. International Journal for Numerical Methods in Engineering 49, 977–1006 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Konyukhov
    • 1
  • Karl Schweizerhof
    • 1
  1. 1.Institute of MechanicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations