Advertisement

Two-Level Block Preconditioners for Contact Problems

  • C. Janna
  • M. Ferronato
  • G. Gambolati
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 58)

Abstract

Contact mechanics can be addressed numerically by Finite Elements using either a penalty formulation or the Lagrange multipliers. The penalty approach leads to a linearized symmetric positive definite system which can prove severely ill-conditioned, with the iterative solution to large 3D problems requiring expensive preconditioners to accelerate, or even to allow for, convergence. If the nodal unknowns are numbered properly, the system matrix takes on a two-level block structure that may be efficiently preconditioned by matrices having the same block structure. The present study addresses two different approaches, the Mixed Constraint Preconditioner (MCP) and the Multilevel Incomplete Factorization (MIF). It is shown that both MCP and MIF can prove very effective in the solution of large size 3D contact problems discretized by a penalty formulation, where classical algebraic preconditioners, such as the incomplete Cholesky decomposition, may exhibit poor performances.

Keywords

Contact Problem Penalty Formulation Incomplete Factorization Mixed Constraint Memory Occupation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajiz, M.A., Jennings, A.: A robust incomplete Cholesky-conjugate gradient algorithm. Int. J. Numer. Meth. Eng. 20, 949–966 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Axelsson, O., Kolotilina, L.Y.: Diagonally compensated reduction and related preconditioning methods. Numer. Linear Algebra Appl. 1, 155–177 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baù, D., Ferronato, M., Gambolati, G., Teatini, P.: Basin scale compressibility of the Northern Adriatic by the radioactive marker technique. Geotechnique 52, 605–616 (2002)CrossRefGoogle Scholar
  4. 4.
    Benzi, M., Tůma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19, 968–994 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Benzi, M., Tůma, M.: A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl. 10, 385–400 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benzi, M., Cullum, K., Tůma, M.: Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput. 22, 1318–1332 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bergamaschi, L., Ferronato, M., Gambolati, G.: Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Comput. Method. Appl. Mech. 196, 2647–2656 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bergamaschi, L., Ferronato, M., Gambolati, G.: Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations. J. Comput. Phys. 227, 9885–9897 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10, 673–688 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in computational contact mechanics. Comput. Method. Appl. Mech. 197, 3922–3931 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ferronato, M., Gambolati, G., Janna, C., Teatini, P.: Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs. Int. J. Numer. Anal. Meth. Geomech. 32, 633–657 (2008)CrossRefGoogle Scholar
  12. 12.
    Ferronato, M., Gambolati, G., Janna, C., Teatini, P.: Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields. Energ. Convers. Manage. 51, 1918–1928 (2010)CrossRefGoogle Scholar
  13. 13.
    HSL Archive: A catalogue of subroutines, Aea Technology, Engineering Software. In: CCLRC (2004), http://www.cse.clrc.ac.uk/nag/hsl
  14. 14.
    Janna, C., Comerlati, A., Gambolati, G.: A comparison of projective and direct solvers for finite elements in elastostatics. Adv. Eng. Softw. 40, 675–685 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Janna, C., Ferronato, M., Gambolati, G.: Multilevel incomplete factorizations for the iterative solution of non-linear FE problems. Int. J. Numer. Meth. Eng. 80, 651–670 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its UTU+UTR+RTU-decomposition. Numer. Linear Algebra Appl. 5, 483–509 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. A 21, 1300–1317 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lin, C., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24–45 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Saad, Y.: ILUT: A dual threshold incomlete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Saad, Y.: ILUM: A multi-elimination ILU preconditioner for general sparse matrices. SIAM J. Sci. Comput. 17(4), 830–847 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Saad, Y., Suchomel, B.: ARMS: An algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9, 359–378 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Saad, Y., Zhang, J.: BILUM: Block version of multi-elimination and multi-level ILU preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 20, 2103–2121 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Saint-George, P., Warzee, G., Notay, Y., Beauwens, R.: Problem-dependent preconditioners for iterative solvers in FE elastostatics. Comput. Struct. 73, 33–43 (1999)CrossRefGoogle Scholar
  25. 25.
    Silvester, D.J., Elman, H.C., Kay, D., Wathen, A.J.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tismenetsky, M.: A new preconditioning technique for solving large sparse linear systems. Linear Algebra Appl. 156, 331–356 (1991)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Janna
    • 1
  • M. Ferronato
    • 1
  • G. Gambolati
    • 1
  1. 1.Department of Mathematical Methods and Models for Scientific ApplicationsUniversity of PadovaPadovaItaly

Personalised recommendations