Skip to main content

Sliding Mode Controllers and Observers for Electromechanical Systems

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 412))

Abstract

Controllers and observers for electromechanical systems are widely used and implemented in the industry in order to improve its performance. Among different electromechanical systems we can find interesting domains of application such as power systems, UAVs, teleoperation. This paper intents to show the advantages of the control and observer design using sliding mode techniques. These domains are related with the research topics of the Mechatronics laboratory of the Nuevo Leon University, in the CIIDIT-UANL Research Institute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cho, H.C., Park, J.H.: Stable bilateral teleoperator under a time delay using a robust impedance control. Mechatronics 15, 611–625 (2005)

    Article  Google Scholar 

  2. Young, K.D., Utkin, V., Özgüner, Ü.: A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology 7(3) (May 1999)

    Google Scholar 

  3. Levant, A.: High-order sliding modes, differentiation and output feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Levant, A.: Quasi-continuous high order sliding-mode controllers. IEEE Transactions on Automatic Control 50(11), 1812–1816 (2005)

    Article  MathSciNet  Google Scholar 

  5. Davila, J., Fridman, L., Poznyak, A.: Observation and identification of mechanical systems via second order sliding modes. In: International workshop on variable structure systems, Aleghero, Italy, June 5 -7, pp. 232–237 (2006)

    Google Scholar 

  6. Floquet, T., Barbot, J.P.: Super twisting algorithm based step-by-step sliding mode observers nonlinear systems with unknown inputs. International Journal of Systems Science 38(10), 803–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Walcott, B.L., Żak, S.H.: State observation of nonlinear uncertain dynamical systems. IEEE Transactions on Automatic Control 32, 88–104 (1987)

    Article  Google Scholar 

  8. Slotine, J.J., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. ASME Journal Dynamical Systems Measurement Control 109, 245–252 (1987)

    Article  MATH  Google Scholar 

  9. Hoyakem, P.F., Spong, M.W.: Bilateral Teleoperation: An historical survey. Automatica 42, 2035–2057 (2006)

    Article  Google Scholar 

  10. Li, C., Elbuluk, M.: A sliding mode observer for sensorless control of permanent magnet synchronous motors. In: Industry Applications Conference (2001)

    Google Scholar 

  11. Bergen, A.: Power System Analysis. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  12. Utkin, V.I., Guldner, J., Shi, J.: Sliding mode control in electromechanical systems. Taylor & Francis, Abington (1999)

    Google Scholar 

  13. Utkin, V.I.: Sliding modes in control and optimization. Comunications and Control Engineering Series. Springer, Heidelberg (1992)

    Google Scholar 

  14. Chapman, J.W., Ilic, M.D., King, C.A., Eng, L., Kaufman, H.: Stabilizing a multi-machine power system via decentralized feedback linearizing excitation control. IEEE Trans. on Power Systems 8(1), 830–839 (1993)

    Article  Google Scholar 

  15. Ortega, R., Galaz, M., Astolfi, A., Sun, Y., Shen, T.: Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. on Automatic Control 50(1), 60–75 (2005)

    Article  MathSciNet  Google Scholar 

  16. Taore, D., Plestan, F., Glumineau, A., de Leon, J.: Sensroless induction motor: Hihg sliding mode controller and adaptive interconnected observer. IEEE Trans. Ind. Electron 55(1), 3818–3827 (2008)

    Article  Google Scholar 

  17. Colbia-Vega, A., de Leon-Morales, J., Fridman, L., Salas-Pena, O., Mata-Jimenez, M.T.: Robust excitation control design using sliding-mode technique for multimachine power systems. Electric Power Systems Research 78(1), 1627–1634 (2008)

    Article  Google Scholar 

  18. Loukianov, A.G., Caedo, J.M., Utkin, V.I., Cabrera-Vazquez, J.: Discontinuous Controller for Power System: Sliding-Mode Block Control Approach. IEEE Trans. On Industrial Electronics 51(2), 340–353 (2004)

    Article  Google Scholar 

  19. Valavanis, K.P.: Advances in Unmanned Aerial Vehicle, University of south Florida Tampa, Florida. Springer, Heidelberg (2007)

    Book  Google Scholar 

  20. Stengel, R.: Flight Dynamics, November 2004. Princeton University Press, Princeton (2004)

    Google Scholar 

  21. Zyskowky, M.K.: Aircraft Simulation Techniques Used in Low-Cost, Commercial Software. In: AIAA 2003, vol. 5818 (August 2003)

    Google Scholar 

  22. Melin, T.: A Vortex Lattice Matlab Implementation for linear Aerodynamic Wing Applications. Masters Thesis, Royal Institute of Technology, KTH (2000)

    Google Scholar 

  23. Etkin, B.: Dynamics of Flight Stability and Control, 3rd edn. John Wiley and Sons, Inc., Chichester (1996)

    Google Scholar 

  24. Naveed, U., Whidborne, J.F.: A lateral Directional Flight Control System for the MOB Blended Wing Body. Departament of Aerospace Sciences. Cranfield University, Bedfordshire MK45 OAL, UK

    Google Scholar 

  25. Guerra-Torres, C., de Leon-Morales, J., Glumineau, A., Traore, D., Boisliveau, R.: Teleoperation of an Experimental Platform of Electrical Machines through the Internet. International Journal of Online Engineering (iJOE) 42(1) (2121) ISSN 1861-2121

    Google Scholar 

  26. Garcia-Valdovinos, L.G., Parra-Vega, V., Arteaga, M.: Higher-order sliding mode impedance bilateral teleoperation with robust state estimation under constant unknown time delay. In: Proceedings IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 1293–1298 (2005)

    Google Scholar 

  27. Cho, H.C., Park, J.H.: Stable bilateral teleoperatin under a time delay using a robuste impedance control. Mechatronics 15, 611–625 (2005)

    Article  Google Scholar 

  28. Rodriguez, A., De Leon, J., Fridman, L.: Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization. International Journal of Non-Linear Mechanics 43, 948–961 (2008)

    Article  Google Scholar 

  29. Rodriguez, A., De Leon, J., Fridman, L.: Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer. Chaos, Solitons and Fractals 42, 3219–3233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Leon-Morales, J. (2011). Sliding Mode Controllers and Observers for Electromechanical Systems. In: Fridman, L., Moreno, J., Iriarte, R. (eds) Sliding Modes after the First Decade of the 21st Century. Lecture Notes in Control and Information Sciences, vol 412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22164-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22164-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22163-7

  • Online ISBN: 978-3-642-22164-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics