Skip to main content

Applying Sliding Mode Technique to Optimal Filter and Controller Design

  • Chapter
Sliding Modes after the First Decade of the 21st Century

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 412))

Abstract

This paper addresses the mean-square and mean-module filtering problems for a linear system with Gaussian white noises. The obtained solutions contain a sliding mode term, signum of the innovations process. It is shown that the designed sliding mode mean-square filter generates the mean-square estimate, which has the same minimum estimation error variance as the best estimate given by the classical Kalman-Bucy filter, although the gain matrices of both filters are different. The designed sliding mode mean-module filter generates the mean-module estimate, which yields a better value of the mean-module criterion in comparison to the mean-square Kalman-Bucy filter. The theoretical result is complemented with an illustrative example verifying performance of the designed filters. It is demonstrated that the estimates produced by the designed sliding mode mean-square filter and the Kalman-Bucy filter yield the same estimation error variance, and there is an advantage in favor of the designed sliding mode mean-module filter. Then, the paper addresses the optimal controller problem for a linear system over linear observations with respect to different Bolza-Meyer criteria, where 1) the integral control and state energy terms are quadratic and the non-integral term is of the first degree or 2) the control energy term is quadratic and the state energy terms are of the first degree. The optimal solutions are obtained as sliding mode controllers, each consisting of a sliding mode filter and a sliding mode regulator, whereas the conventional feedback LQG controller fails to provide a causal solution. Performance of the obtained optimal controllers is verified in the illustrative example against the conventional LQG controller that is optimal for the quadratic Bolza-Meyer criterion. The simulation results confirm an advantage in favor of the designed sliding mode controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  2. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)

    Google Scholar 

  3. Fridman, L., Levant, A.: Higher order sliding modes. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control in Engineering, pp. 53–101. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  4. Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  5. Suzuki, S., Pan, Y., Furuta, K., Hatakeyama, S.: VS-control with time-varying sliding sector: Design and application to pendulum. Asian Journal of Control 6, 307–316 (2004)

    Article  Google Scholar 

  6. Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automatic Control 51, 853–858 (2006)

    Article  Google Scholar 

  7. Baev, S., Shtessel, Y.B., Edwards, C., Spurgeon, S.K.: Output feedback tracking in causal nonminimum-phase nonlinear systems using HOSM techniques. In: Proc. 10th International Workshop on Variable Structure Systems, pp. 209–214 (2008)

    Chapter  Google Scholar 

  8. Azemi, A., Yaz, E.: Sliding mode adaptive observer approach to chaotic synchronization. ASME Transactions. J. Dynamic Systems, Measurements and Control 122, 758–765 (2000)

    Article  Google Scholar 

  9. Spurgeon, S.K.: Sliding mode observers: A survey. Intern. Journal of Systems Science 39, 751–764 (2008)

    Article  MathSciNet  Google Scholar 

  10. Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second order sliding modes. IEEE Trans. Automatic Control 52, 2085–2102 (2007)

    Article  MathSciNet  Google Scholar 

  11. Utkin, V.I., Shi, L.: Integral sliding mode in systems operating under uncertainty conditions. In: Proc. 35th Conference on Decision and Control, Kobe, Japan, pp. 4591–4596 (1996)

    Google Scholar 

  12. Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On second order sliding mode controllers. In: Young, K.D., Ozguner, U. (eds.) Variable Structure Systems, Sliding Mode and Nonlinear Control. LNCIS, vol. 247, pp. 329–350. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Basin, M.V., Ferrara, A., Calderon-Alvarez, D.: Sliding mode regulator as solution to optimal control problem. In: Proc. 47th Conference on Decision and Control, Cancun, Mexico, pp. 2184–2189 (2008)

    Chapter  Google Scholar 

  14. Basin, M.V., Ferrara, A., Calderon-Alvarez, D., Dinuzzo, F.: Sliding mode optimal regulator for a Bolza-Meyer criterion with non-quadratic state energy terms. In: Proc. 2009 American Control Conference, St. Louis, MO, pp. 4951–4955 (2009)

    Google Scholar 

  15. Xia, Y., Jia, Y.: Robust sliding mode control for uncertain stochastic time-delay systems. IEEE Trans. Automatic Control 48, 1086–1092 (2003)

    Article  MathSciNet  Google Scholar 

  16. Niu, Y., Ho, D.W.C., Lam, J.: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatica 41, 873–880 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, P., Xia, Y., Liu, G.P., Rees, D.: On designing of sliding mode control for stochastic jump systems. IEEE Trans. Automatic Control 51, 97–103 (2006)

    Article  MathSciNet  Google Scholar 

  18. Basin, M.V., Fridman, L., Skliar, M.: Optimal and robust sliding mode filter for systems with continuous and delayed measurements. In: Proc. 41st Conference on Decision and Control, Las Vegas, NV, pp. 2594–2599 (2002)

    Google Scholar 

  19. Basin, M.V., Fridman, L., Rodriguez-Gonzalez, J.G., Acosta, P.: Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. Intern. J. Robust Nonlinear Control 15, 407–421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. ASME Trans., Part D (J. of Basic Engineering) 83, 95–108 (1961)

    MathSciNet  Google Scholar 

  21. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley Interscience, New York (1972)

    MATH  Google Scholar 

  22. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Heidelberg (1975)

    MATH  Google Scholar 

  23. Pugachev, V.S., Sinitsyn, I.N.: Stochastic Systems: Theory and Applications. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  24. Åström, K.J.: Introduction to Stochastic Control Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  25. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basin, M. (2011). Applying Sliding Mode Technique to Optimal Filter and Controller Design. In: Fridman, L., Moreno, J., Iriarte, R. (eds) Sliding Modes after the First Decade of the 21st Century. Lecture Notes in Control and Information Sciences, vol 412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22164-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22164-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22163-7

  • Online ISBN: 978-3-642-22164-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics