Advertisement

Evaluation of the Potential of the Pegmatitic Quartz Veins of the Sierra de Comechigones (Argentina) as a Source of High Purity Quartz by a Combination of LA-ICP-MS, ICP, Cathodoluminescence, Gas Chromatography, Fluid Inclusion Analysis, Raman and FTIR spectroscopy

  • Giulio MorteaniEmail author
  • Florian Eichinger
  • Jens Götze
  • Alexandre Tarantola
  • Axel Müller
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Summary

Due to the increasing demand for high purity quartz the pegmatitic quartz veins of the Guacha Corral shear zone (Sierra de Comechigones, Sierras Pampeanas, Argentina) get increasing economic interest. The presented combination of accurate field work backed by transmitted light microscopy, cathodoluminescence, LA-ICP-MS spot chemical analyses and analyses of solutes and gases liberated from fluid inclusions was developed in order to produce a robust exploration tool able to select in an early stage of prospection quartz veins that are promising for the production of high purity quartz. One of the important results of this combination of methods is the possibility to define the amount of lattice bound impurities. Such lattice bound impurities are difficult to eliminate by mineral preparation techniques whereas solid and fluid inclusions are amenable to a mineral preparation. In the present case the combination of methods produced a positive evaluation of the studied quartz veins as an excellent source for the production of high purity quartz.

Keywords

Fluid Inclusion Total Dissolve Solid Quartz Vein Laser Ablation Inductively Couple Plasma Mass Spectrometry Quartz Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank J. Sfagulla (Cordoba, Argentina), H. J. Heitzig (Pfaffenhofen a. d Glonn, Germany) and G. von Gromann (Cordoba, Argentina) for financial support, help in the field and discussions about geology and economics of quartz. We thank A. M. von der Kerkhof (Göttingen) for a thoughtful review and C. Preinfalk for accurate proof reading.

References

  1. Bottrell SH, Yardley B, Buckley F (1988) A modified crush-leach method fort he analysis of fluid inclusion electrolytes. Bulletin de Mineralogie 111:279–290Google Scholar
  2. Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158Google Scholar
  3. Burlakov EV (1995) Dodo: Alpine Klüfte im Polar-Ural. Lapis, 20, 13–26Google Scholar
  4. Burlakov EV (1999) The Dodo deposit (subpolar Urals, Russia). Mineral Rec 30:427–442Google Scholar
  5. Burruss RC (2003) Petroleum fluid inclusions, an introduction. In: Samson IM, Anderson AJ, Marshall DD (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association Canada, Short Course Series 32, 159–174Google Scholar
  6. Eichinger F, Meier D, Hämmerli J, Diamond LW (2010) Stable isotope signatures of gases liberated from fluid inclusions in Bedrock at Olkiluoto. Posiva Working Report 2010–88, Posiva Oy, Olkiluoto, Finland. (www.posiva.fi)
  7. Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247CrossRefGoogle Scholar
  8. Götze J, Plötze M, Trautmann T (2005) Structure and luminescence characteristics of quartz from pegmatites. Am Mineral 90:13–21CrossRefGoogle Scholar
  9. Hämmerli J, Diamond LW (2009) Fluid inclusions in basement rocks at Olkiluoto, Finland, and their implications for a planned nuclear waste repository. In: ECROFI-XX, Granada, Spain, pp 109–110Google Scholar
  10. Harben PW (2002) The industrial mineral handybook—a guide to markets, specifications and prices. Industrial mineral information, Worcester Park, United Kingdom, 4th edn. p 412Google Scholar
  11. Haus R (2005) High demands on high purity. Ind Mineral 10:62–67Google Scholar
  12. Herrera AO (1968) Geochemical evolution of zoned pegmatites of Argentina. Econ Geol 63:13–29CrossRefGoogle Scholar
  13. Jung L (1992) High purity natural quartz. Part I: High purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology. Liberty Corner, New Jersey, p 657 Google Scholar
  14. Martino R (2003) Las fajas de deformation ductil de la Sierras Pampeanas de Córdoba: una reseña general. Revista de la Association Geologica Argentina 58:549–571Google Scholar
  15. Martino RD, Guereschi AB, Sfragulla JA (2009) Petrology, structure and tectonic significance of the Tuclame banded schists in the Sierras Pampeanas of Còrdoba and its relationships with the metamorphic basement of northwestern Argentina. J South Am Earth Sci 27:280–298CrossRefGoogle Scholar
  16. Martino RD, Guereschi AB, Anzil A (2010) Metamorphic and tectonic evolution at 31°36′′S across a deep crustal zone from the Sierra Chica of Cordoba, Sierras Pampeanas, Argentina. J South Am Earth Sci 30:12–28CrossRefGoogle Scholar
  17. Moore P (2005) High-purity quartz. Ind Minerals 455:53–57Google Scholar
  18. Morteani G, Preinfalk C, Spiegel W, Bonalumi A (1995) The Achala granitic complex and the pegmatites of the Sierras Pampeanas (Northwest Argentina): A study in differentiation. Econ Geol 90:636–647CrossRefGoogle Scholar
  19. Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norvay. Miner Deposita 42:523–535CrossRefGoogle Scholar
  20. Munz IA (2001) Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos 55:195–212CrossRefGoogle Scholar
  21. Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995) Kathodolumineszenz: Methodik und Anwendung. Zentralblatt für Geologie und Paläontologie Teil I, H 1(2):287–306Google Scholar
  22. Otamendi JE, Nullo FE, Patiño Douce AE, Fagiano M (1998) Geology, mineralogy and geochemistry of syn-anatectic granites from the Achiras complex, Córdoba, Argentina; some petrogenetic and geodynamic implications. J South Am Earth Sci 11:407–423CrossRefGoogle Scholar
  23. Otamendi JE, Patino Douce AE, Demichelis AH (1999) Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina. J Metamorphic Geol 17:415–434CrossRefGoogle Scholar
  24. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800Google Scholar
  25. Rapela CW, Shaw DM (1979) Trace and major element models of granitoid genesis in the Pampean Ranges, Argentina. Geochim Cosmochim Acta 43:1117–1129CrossRefGoogle Scholar
  26. Rapela CW, Heaman LM, McNutt RH (1982) Rb-Sr Geochronology of granitoid rocks from the Pampean Ranges, Argentina. J Geol 90:574–582CrossRefGoogle Scholar
  27. Rapela CW, Toselli A, Heaman L, Saavedra J (1990) Granite plutonism of the Sierras Pampeanas, An inner cordilleran Paleozoic arc in the southern Andes. Geol Soc Am 241:77–90 Special paperGoogle Scholar
  28. Rossman GR, Weis D, Wasserburg GJ (1987) Rb, Sr, Nd and Sm concentrations in quartz. Geochim Cosmochim Acta 51:2325–2329CrossRefGoogle Scholar
  29. Siegesmund S, Steenken A, Martino RD, Wemmer K, Lopez de Luchi M, Frei R, Presnyakov S, Guereschi A (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci 99:1199–1226CrossRefGoogle Scholar
  30. Simpson C, Law RD, Gromet LP, Mirò R, Northrup CJ (2003) Paleozoic deformation in the Sierras de Córdoba and Sierra de la Minas, eastern Sierras Pampeanas, Argentina. J South Am Earth Sci 15:749–764CrossRefGoogle Scholar
  31. Sims JP, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow RG, Stuart-Smith PG, Mirò R (1998) U-Pb, Th-Pb, and Ar–Ar geochronology from the southern Sierras Pampeanas: implications for the Paleozoic tectonic evolution ofr the western Proto-Andean Margin of Gondwana, vol. 142, Geol Soc London Spec Publ 259–281Google Scholar
  32. Steenken A, López de Luchi MG, Martinez Dopico C, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int J Earth Sci 100:465–488CrossRefGoogle Scholar
  33. Steenken A, Siegesmund S, López de Luchi MG, Frei R, Wemmer K (2006) Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications fort he Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). J Geol Soc 163:965–982CrossRefGoogle Scholar
  34. Steenken A, Wemmer K, Martino RD, Lopez de Luchi M, Guareschi A, Siegesmund S (2010) Post-Pampean cooling and uplift of the Sierras Pampeanas in the west of Córdoba (Central Argentina). N Jb Geol Paleont Abh 256:235–255CrossRefGoogle Scholar
  35. Tarantola A, Diamond LW, Stünitz H (2010) Modification of fluid inclusions in quartz by deviatoric stress I: Experimentally induced changes in inclusion shapes and microstructures. Contrib Min Pet 160:825–843Google Scholar
  36. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10:149–165CrossRefGoogle Scholar
  37. Weil JA (1993) A review of the EPR spectroscopy of the point defects in αa-quartz: The decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and chemistry of SiO2 and the Si-SiO2 interface 2. Plenum Press, New York, pp 131–144Google Scholar
  38. Whitmeyer SJ, Simpson C (2003) High strain-rate deformation fabrics characterize a kilometres-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina. J Struct Geol 25:909–922CrossRefGoogle Scholar
  39. Wopenka B, Pasteris JD, Freeman JJ (1990) Analysis of individual fluid inclusions by Fourier transform infrared and Raman microspectroscopy. Geochim Cosmochim Acta 54:519–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giulio Morteani
    • 1
    Email author
  • Florian Eichinger
    • 1
  • Jens Götze
    • 2
  • Alexandre Tarantola
    • 3
  • Axel Müller
    • 4
  1. 1.Hydroisotop GmbHSchweitenkirchenGermany
  2. 2.TU Bergakademie Freiberg, Institut für MineralogieFreibergGermany
  3. 3.G2R-CNRS, Lorraine UniversityVandœuvre-lès-NancyFrance
  4. 4.Geological Survey of NorwayTrondheimNorway

Personalised recommendations