Skip to main content

Quartz Regeneration and its Use as a Repository of Genetic Information

  • Chapter
Quartz: Deposits, Mineralogy and Analytics

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Quartz represents one of the most widespread minerals and is widely used in geosciences to reconstruct physic-chemical conditions of rock and mineral formation. However, interpretation of analytical data may be limited by the ability of quartz to regenerate during secondary alteration processes occurring under metamorphic or hydrothermal conditions. This behaviour distinguishes quartz from most minerals commonly associated with. Primary genetic information is obliterated during quartz regeneration. This includes features related to the real structure of quartz, but also to fluid and mineral inclusions. The present contribution examines examples covering various fields of mineral research, namely the genetic interpretation of trace element content in quartz, quartz provenance analysis using cathodoluminescence (CL) colour imaging, and the analysis of mineral and fluid inclusions in quartz. It is demonstrated in all cases that care needs to be taken when interpreting genetic information encoded. Distinction of features related to primary growth or secondary alteration is not simple and requires application of complementary analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agangi A, McPhie J, Kamenetsky VS (2011) Magma chamber dynamics in a silicic LIP revealed by quartz: the Mesoproterozoic Gawler Range Volcanics. Lithos 126:68–83

    Google Scholar 

  • Agel A, Petrov I (1990) Substitutional aluminium in the quartz lattice as indicator for the temperature of formation. Eur J Mineral 2 (Bh.1):144 (abstract, in German)

    Google Scholar 

  • Bakker RJ (2009) Reequilibration of fluid inclusions: bulk diffusion. Lithos 112:277–288

    Google Scholar 

  • Bambauer HU (1961) Spurenelementgehalte und Îł-Farbzentren in Quarzen aus ZerrklĂĽften der Schweizer Alpen. Schweiz Mineral Petrol Mitt 41:335–369

    Google Scholar 

  • Barnicoat AC, Henderson IHC, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Mutingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824

    Google Scholar 

  • Barton JM, Wenner DB, Hallbauer DK (1992) Oxygen isotopic study of the nature and provenance of large quartz and chert clasts in gold-bearing conglomerates of South Africa. Geology 20:1123–1126

    Google Scholar 

  • Blatt H (1987) Oxygen isotopes and the origin of quartz. J Sediment Petrol 57:373–377

    Google Scholar 

  • Bodnar RJ (2003a) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course vol 32, Quebec, pp 1–8

    Google Scholar 

  • Bodnar RJ (2003b) Reequilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course vol 32, Quebec, pp 213–230

    Google Scholar 

  • Boggs S, Kwon YI, Goles GG, Rusk BG, Krinsley D, Seyedolali A (2002) Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. J Sediment Res 72:408–415

    Google Scholar 

  • Boiron MC, Essarraj S, Sellier E, Cathelineau M, Lespinasse M, Poty B (1992) Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim Cosmochim Acta 56:175–185

    Google Scholar 

  • Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580

    Google Scholar 

  • Botis S, Pan Y, Bonli T, Xu Y, Zhang A, Nokhrin S, Sopuck V (2006) Natural radiation-induced damage in quartz. II. Distribution and implications for uranium mineralization in the Athabasca basin, Saskatchewan, Canada. Can Mineral 44:1387–1402

    Google Scholar 

  • Bottrell SH, Yardley B, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull MinĂ©ral 111:279–290

    Google Scholar 

  • Breiter K, MĂĽller A (2009) Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur J Mineral 21:335–346

    Google Scholar 

  • Campbell AR, Panter KS (1990) Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael`s Mount and Cligga Head, Cornwall England. Geochim Cosmochim Acta 54:673–681

    Google Scholar 

  • Campbell AR, Robinson-Cook S (1987) Infrared fluid inclusion microthermometry on coexisting wolframite and quartz. Econ Geol 82:1640–1645

    Google Scholar 

  • Campbell AR, Robinson-Cook S, Amindays C (1988) Observation of fluid inclusions in wolframite from Panasqueira, Portugal. Bull MinĂ©ral 111:251–256

    Google Scholar 

  • Charoy B, Noronha F (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). J Petrol 37:73–94

    Google Scholar 

  • Cherniak DJ (2010) Diffusion in quartz, melilite, silicate perovskite, and mullite. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:735–756

    Google Scholar 

  • Claffy EW, Ginther RJ (1959) Red-luminescing quartz. Am Mineral 44:987–994

    Google Scholar 

  • Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochim Cosmochim Acta 30:1235–1241

    Google Scholar 

  • Dennen WH, Blackburn WN, Quesada A (1970) Aluminium in quartz as a geothermometer. Contrib Mineral Petrol 27:332–342

    Google Scholar 

  • Doukhan JC, TrĂ©pied L (1988) Plastic deformation of quartz single crystals. Bull MinĂ©ral 108:97–123

    Google Scholar 

  • Enchbat D (2007) Die erzbildenden Fluide in den Au-W-Mineralisationen des Mongolischen Altai: Untersuchungen zu FluideinschlĂĽssen und Spurenelementchemismus von Erz- und Gangmineralen. Freiberg Forschungsh C520, TU Bergakademie Freiberg, 101 pp

    Google Scholar 

  • Enchbat D, Kempe U, Dandar S, Wolf D (1999) Fluid inclusion characteristics and trace element chemistry of ore and vein minerals from the Au-W deposits in Altai tectonic zone of Mongolian Altai. In: LĂĽders V, Schmidt-Mumm A, Thomas R (eds) ECROFI XV: European current research on fluid inclusions: abstracts and program, vol 99(6). Alfred-Wegener-Stiftung, Potsdam, Terra nostra, pp 93–94

    Google Scholar 

  • Frezzotti ML (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299

    Google Scholar 

  • Frimmel HE, Gartz VH (1997) Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Mineral Deposita 32:523–530

    Google Scholar 

  • Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand gold fields, the world′s largest gold province. Econ Geol 100th Anniversary Volume:769–797

    Google Scholar 

  • FĂĽchtbauer H, Leggewie R, Gockeln C, Heinemann C, Schröder P (1982) Methoden der Quarzuntersuchung, angewandt auf mesozoische und pleistozäne Sandsteine und Sande. N Jb Geol Paläont Mh 193–210

    Google Scholar 

  • Gartz VH, Frimmel HE (1999) Complex metasomatism of an Archean placer in the Witwatersrand basin, South Africa: the Ventersdorp Contact reef—a hydrothermal aquifer? Econ Geol 94:689–706

    Google Scholar 

  • Gavrilenko VV, Kempe U, Gaidamako IM (1998) Formation of chemical heterogeneity in minerals during their metasomatic growth and replacement (on the example of scheelitization of wolframite). Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 127(6):75–78 (in Russian)

    Google Scholar 

  • Gavrilenko V, Morozov M, Kempe U, Smolenskiy V, Wolf D (1997) Unusual REE distribution patterns in fluorites from Sn-W deposits of the quartz-cassiterite and quartz-wolframite type. In: Novák M, Janoušek V, Košler J (eds) MAEGS—10, challenges to chemical geology. J Czech Geol Soc 42(3):36 (abstract)

    Google Scholar 

  • Gibson RL, Reimold WU (1999) The significance of the Vredefort Dome for the thermal and structural evolution of the Witwatersrand basin, South Africa. Mineral Petrol 66:5–23

    Google Scholar 

  • Girard JP, Deynoux M (1991) Oxygen isotope study of diagenetic quartz overgrowths from the upper Proterozoic quartzites of western Mali, Taoudeni basin: implications for conditions of quartz cementation. J Sediment Petrol 61:406–418

    Google Scholar 

  • Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55:159–193

    Google Scholar 

  • Götte T, Pettke T, Ramseyer K, Koch-MĂĽller M, Mullis J (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: a fingerprint of growth dynamics. Am Mineral 96:802–813

    Google Scholar 

  • Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberg Forschungsh C485, TU Bergakademie Freiberg, 128 pp

    Google Scholar 

  • Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9:529–537

    Google Scholar 

  • Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contrib Sediment Petrol 21, Schweizerbart′sche Verlagsbuchhandlung, Nägele & Obermiller, Stuttgart, 91 pp

    Google Scholar 

  • Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63(2):149–163

    Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68:3741–3759

    Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250

    Google Scholar 

  • Graupner T, Kempe U, Dombon E, Pätzold O, Leeder O, Spooner ETC (1999) Fluid regime and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems. Chem Geol 154:21–58

    Google Scholar 

  • Graupner T, Götze J, Kempe U, Wolf D (2000) CL for characterizing quartz and trapped fluid inclusions in mesothermal quartz veins: Muruntau Au ore deposit Uzbekistan. Mineral Mag 64(6):1007–1016

    Google Scholar 

  • Griggs DT, Blacic JD (1965) Quartz: anomalous weakness of synthetic crystals. Science 147:292–295

    Google Scholar 

  • Hallbauer DK (1992) The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks. Proc Geol Soc South Africa, Bloemfontain, 157–159

    Google Scholar 

  • HaĂźler S, Kempe U, Monecke T, Götze J (2005) Trace element content of quartz from the Ehrenfriedersdorf Sn-W deposit, Germany: results of an acid-wash procedure. In: Mao Y, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin, pp 397–400

    Google Scholar 

  • Higgins NC (1980) Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Can J Earth Sci 17:823–830

    Google Scholar 

  • Higgins NC (1985) Wolframite deposition in a hydrothermal vein system: the Gray River tungsten prospect, Newfoundland, Canada. Econ Geol 80:1297–1327

    Google Scholar 

  • Hösel G (1994) Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge. Sächsisches Landesamt fĂĽr Umwelt und Geologie, Radebeul und Sächsisches Oberbergamt, Freiberg, 196 pp

    Google Scholar 

  • Jolley SJ, Henderson HC, Barnicoat AC, Fox PC (1999) Thrust-fracture network and hydrothermal gold mineralization: Witwatersrand Basin, South Africa. In: McCaffery KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralization. Geol Soc, vol 155. Spec Publ, London, pp 153–165

    Google Scholar 

  • Jourdan AL, Vennemann TW, Mullis J, Ramseyer K (2009) Oxygen isotope sector zoning in natural hydrothermal quartz. Mineral Mag 73:615–632

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387

    Google Scholar 

  • Kempe U, Dandar S, Getmanskaya TI, Wolf D (1994) The tungsten-antimony mineralization (Focussed on new occurrences in the Mongolian Altai). In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of Collisional Orogens. Czech Geological Survey, Prague, pp 301–308

    Google Scholar 

  • Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): indications from a combined CL-SEM study. Mineral Mag 63(2):165–177

    Google Scholar 

  • Kouzmanov K, Pettke T, Heinrich CA (2010) Direct analysis of ore-precipitating fluids: combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Econ Geol 105:351–373

    Google Scholar 

  • Kremenetsky AA, Maksimyuk IE, Yushko NA, Kempe U, Poutivtsev M (2005) Trace elements in quartz from conglomerates in the Witwatersrand Basin (South African Republic) and its role in the understanding of the deposit formation. In: Burenko EK, Kremenetsky AA (eds) Prikladnaya Geokhimiya. IMGRE, Moscow, vyp. 7, 1 87–100 (in Russian)

    Google Scholar 

  • Landtwing MR, Pettke T (2005) Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. Am Mineral 90:122–131

    Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628

    Google Scholar 

  • Larsen RB, Jacamon F, Kronz A (2009) Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineral Mag 73:691–707

    Google Scholar 

  • Law JDM, Phillips GN (2005) Hydrothermal replacement model for Witwatersrand gold. Econ Geol 100th Anniversary Volume:799–811

    Google Scholar 

  • Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73:633–643

    Google Scholar 

  • Lehmann K, Pettke T, Ramseyer K (2011) Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chem Geol 280:47–57

    Google Scholar 

  • LĂĽders V (1996) Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite): metallogenic implications. Econ Geol 91:1462–1468

    Google Scholar 

  • McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Mineral 9:79–94

    Google Scholar 

  • Minter WEL, Goedhart M, Knight J, Frimmel HE (1993) Morphology of Witwatersrand gold grains from the Basal Reef: evidence for their detrital origin. Econ Geol 88:237–248

    Google Scholar 

  • Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315

    Google Scholar 

  • Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000a) Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS. Geostandard Newlett 24:73–81

    Google Scholar 

  • Monecke T, Monecke J, Mönch W, Kempe U (2000b) Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources. Mineral Petrol 70:235–256

    Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202:709–724

    Google Scholar 

  • Monecke T, Kempe U, Trinkler M, Thomas R, Dulski P, Wagner T (2011) Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39:295–298

    Google Scholar 

  • MĂĽller A, Herrington R, Armstrong R, Seltmann R, Kirwin D, Stenina NG, Kronz A (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineral Deposita 45:707–727

    Google Scholar 

  • MĂĽller A, Wiedenbeck M, Van den Kerkhof AM, Kronz A, Simon K (2003) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763

    Google Scholar 

  • Novgorodova MI, Veretennikov VM, Boyarskaya RV, Drynkin VI (1984) Geochemistry of trace elements in gold-bearing quartz. Geochem Int 21:101–113

    Google Scholar 

  • Onasch CM, Vennemann TW (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23:1103–1106

    Google Scholar 

  • Penniston-Dorland SC (2001) Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am Mineral 86:652–666

    Google Scholar 

  • Perny B, Eberhardt P, Ramseyer K, Mullis J, Pankrath R (1992) Microdistribution of Al, Li, and Na in α quartz: possible causes and correlation with short-lived cathodoluminescence. Am Mineral 77:534–544

    Google Scholar 

  • Phillips GN, Law JDM (2000) Witwatersrand gold fields: geology, genesis, and exploration. Rev Econ Geol 13:439–500

    Google Scholar 

  • Phillips GN, Myers RE (1989) The Witwatersrand goldfields: Part II. An origin for Witwatersrand gold during metamorphism and associated alteration. Econ Geol Mon 6:598–608

    Google Scholar 

  • Plötze M (1995) EPR investigations of quartz, scheelite and fluorite from high-thermal trace-metal mineralization (in German). PhD thesis, TU Bergakademie Freiberg, 141 p

    Google Scholar 

  • Poutivtsev M (2001) Bestimmung der Spurenelementgehalte in Konglomeratquarzen aus vererzten und unvererzten Reefs der Au-U-Lagerstätte Witwtersrand (SĂĽdafrikanische Republik) im Vergleich mit Konglomeratquarzen aus Vorkommen in Karelien (Russland) Unpubl Diploma thesis, TU Bergakademie Freiberg, 76 pp

    Google Scholar 

  • Poutivtsev M, Kempe U, Götze J, Monecke T, Wolf D, Kremenetsky AA (2001) Cathodoluminescece and trace element characteristics of quartz pebbles from the Witwa-tersrand, South Africa. In: Cathodoluminescence in geosciences: new insights from CL in combination with other techniques, Abstracts. TU Bergakademie Freiberg, pp 101–102

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of α-quartz. Am Mineral 75:791–800

    Google Scholar 

  • Richter DK, Götte T, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166

    Google Scholar 

  • Robb LJ, Meyer FM (1990) The nature of the Witwatersrand hinterland: conjectures on the source area problem. Econ Geol 85:511–536

    Google Scholar 

  • Robb LJ, Meyer FM (1991) A contribution to recent debate concerning epigenetic versus syngenetic mineralization processes in the Witwatersrand basin. Econ Geol 86:396–401

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, vol 12. Mineralogical Society of America, Washington, 646 pp

    Google Scholar 

  • Rusk BG, Reed MH (2002) Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30:727–730

    Google Scholar 

  • Rusk BG, Koenig A, Lowers HA (2011) Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation inductively coupled plasma mass spectrometry. Am Mineral 96:703–708

    Google Scholar 

  • Rusk BG, Lowers H, Reed MH (2008) Trace elements in hydrothermal quartz; relationships to cathodoluminescent textures and insights into hydrothermal processes. Geology 36:547–550

    Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace element content of quartz from the porphyry copper deposit in Butte, Montana. Am Mineral 91:1300–1312

    Google Scholar 

  • Samson I, Anderson A, Marshall D (2003) Fluid inclusions: analysis and interpretation. Mineral Assoc, Canada, Short Course vol 32, Quebec, 374 pp

    Google Scholar 

  • Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re–Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand basin. Chem Geol 276:88–94

    Google Scholar 

  • Seyedolali A, Krinsley DH, Boggs S, O`Hara PF, Dypvik H, Goles GG (1997) Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology 25:787–790

    Google Scholar 

  • Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126

    Google Scholar 

  • Sørensen BE, Larsen RB (2009) Coupled trace element mobilisation and strain softening in quartz during retrograde fluid infiltration in dry granulite protoliths. Contrib Mineral Petrol 157:147–161

    Google Scholar 

  • Spear FS, Wark DA (2009) Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J metamorphic Geol 27:187–205

    Google Scholar 

  • Sprunt ES, Dengler LA, Sloan D (1978) Effects of metamorphism on quartz cathodoluminescence. Geology 6:305–308

    Google Scholar 

  • Taylor RP (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite—topaz granite, Southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. Can Mineral 30:895–921

    Google Scholar 

  • Thomas R, Förster HJ, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

    Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Google Scholar 

  • Vennemann TW, Kesler SE, O’Neil JR (1992) Stable isotope compositions of quartz pebbles and their fluid inclusions as tracer of sediment provenance: implications for gold- and uranium-bearing quartz pebble conglomerates. Geology 20:837–840

    Google Scholar 

  • Vollbrecht A, OberthĂĽr T, Ruedrich J, Weber K (2002) Microfabric analyses applied to the Witwatersrand gold- and uranium-bearing conglomerates: constraints on the provenance and post-depositional modification of rock and ore components. Mineral Deposita 37:433–451

    Google Scholar 

  • Vollbrecht A, Ruedrich J, Weber K, OberthĂĽr T (1996) GefĂĽgekundliche Untersuchungen an Geröllquarzen der Witwatersrand-Lagerstätte in SĂĽdafrika. Z Angew Geol 42:156–161

    Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754

    Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238

    Google Scholar 

  • Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim Cosmochim Acta 61:4337–4348

    Google Scholar 

  • Webster JD (2006) Melt inclusions in plutonic rocks. Mineral Ass Can, Short courses vol 36, Quebec, 237 pp

    Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10:149–165

    Google Scholar 

  • Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO interface 2. Plenum Press, New York, pp 131–144

    Google Scholar 

  • Whiting KL, Rusk B, Spandler C, Dimond A, Emsbo P (2010) Insights into the origin of Charters Towers Warrior Vein system from fluid inclusions and quartz trace elements. EGRU Newsletter, School of Earth & Environmental Science, Economic Geology Research Unit, James Cook University, Australia, vol 8, pp 12–14

    Google Scholar 

  • Williams LB, Hervig RL, Bjørlykke K (1997) New evidence for the origin of quartz cements in hydrocarbon reservoirs revealed by oxygen isotope microanalyses. Geochim Cosmochim Acta 61:2529–2538

    Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contrib Sedimentol 8:1–96

    Google Scholar 

  • Zuffa GG (1985) Provenance of arenites. NATO ASI series C 148. Reidel Publ. Co., Boston, p 393

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge reviews by Torsten Graupner and Brian Rusk, which helped us to significantly improve the manuscript. We thank Dieter Wolf for useful discussion on the behaviour of quartz. The trace element analyses would not have been possible without the analytical support by Gisela Bombach and Werner Klemm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Kempe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kempe, U., Götze, J., Dombon, E., Monecke, T., Poutivtsev, M. (2012). Quartz Regeneration and its Use as a Repository of Genetic Information. In: Götze, J., Möckel, R. (eds) Quartz: Deposits, Mineralogy and Analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_15

Download citation

Publish with us

Policies and ethics