LSB Steganographic Detection Using Compressive Sensing

  • Constantinos Patsakis
  • Nikolaos Aroukatos
  • Stelios Zimeras
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 11)


People have always been using several techniques in order to protect their privacy. For centuries, steganography has been used, but only in the last decades the proper mathematical background has been developed. Due technological advances, steganography has found many applications, with most important the protection of digital assets through DRM.

This work proposes a new detection method of steganographic content through compressive sensing. The proposed method is a probabilistic filter that can detect steganographic content in images with increased probability, if this is made with the LSB method, after applying a filter with compressive sensing technique.


Steganography compressive sensing steganalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wayner, P.: Disappearing Cryptography: Information Hiding: Steganography & Watermarking, 3rd edn. Morgan Kaufmann, San Francisco (2008)Google Scholar
  2. 2.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann, San Francisco (2007)Google Scholar
  3. 3.
    Donoho, D.L.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Candés, E.J., Wakin, M.B.: An Introduction To Compressive Sampling. IEEE Signal Processing Magazine 21 (March 2008)Google Scholar
  5. 5.
    Donoho, D.L.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: 3rd International Workshop on Information Hiding (1999)Google Scholar
  7. 7.
    Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and grayscale images. In: Proc. ACM Workshop on Multimedia Security, Ottawa, Canada (2001)Google Scholar
  8. 8.
    Dumitrescu, S., Wu, X., Wang, Z.: “Detection of LSB steganography via sample pair analysis. IEEE Trans. on Signal Processing 51(7), 1995–2007 (2003)CrossRefGoogle Scholar
  9. 9.
    Dumitrescu, S., Wu, X.: A new framework of LSB steganalysis of digital media. IEEE Trans. on Signal Processing, Supplement on Secure Media 53(10), 3936–3947 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dumitrescu, X.: LSB Steganalysis Based on High-order Statistics. In: Proc. of ACM Multimedia Security Workshop 2005, pp. 25–32 (August 2005)Google Scholar
  11. 11.
    Fridrich, J., Pevny, T.: Novelty Detection in Blind Steganalysis. In: Proc. ACM Multimedia and Security Workshop, Oxford, UK, September 22-23, pp. 167–176 (2008)Google Scholar
  12. 12.
    Fridrich, J., Pevny, T., Ker, A.D.: From Blind to Quantitative Steganalysis. In: Proc. SPIE, Electronic Imaging, Media Forensics and Security XI, San Jose, CA, January 18-22, pp. 0C 1-0C 14 (2009)Google Scholar
  13. 13.
    Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engineers 37(1), 10–21 (1949)MathSciNetGoogle Scholar
  14. 14.
    Candés, E.J., Romberg, J., Tao, T.: “Stable signal recovery from incomplete and inaccurate measurements”. Comm. Pure Appl. Math. 59, 1207–1223 (2006)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Constantinos Patsakis
    • 1
  • Nikolaos Aroukatos
    • 1
  • Stelios Zimeras
    • 2
  1. 1.Department of InformaticsUniversity of PiraeusGreece
  2. 2.Department of Statistics and Actuarial - Financial MathematicsUniversity of AegeanGreece

Personalised recommendations