Conceptual Representation of Gene Expression Processes

  • Johannes Wollbold
  • René Huber
  • Raimund Kinne
  • Karl Erich Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6581)


The present work visualizes and interprets gene expression data of arthritic patients using the mathematical theory of Formal Concept Analysis (FCA). For the purpose of representing gene expression processes we employ the branch of Temporal Concept Analysis (TCA) which has been introduced during the last ten years in order to support conceptual reasoning about temporal phenomena. In TCA, movements of general objects in abstract or “real” space and time can be described in a conceptual framework. For our purpose in this paper we only need a special case of the general notion of a Conceptual Semantic System (CSS), namely a Conceptual Time System with actual Objects and a Time relation (CTSOT). In the theory of CTSOTs, there are clear mathematical definitions of notions of objects, states, situations, transitions and life tracks. It is very important for our application that these notions are compatible with the granularity of the chosen scaling of the original data.

This paper contributes to the biomedical study of disease processes in rheumatoid arthritis (RA) and the inflammatory disease control osteo-arthritis (OA), focusing on their molecular regulation. Time series of messenger RNA (mRNA) concentration levels in synovial cells from RA and OA patients were measured for a period of 12 hours after cytokine stimulation. These data are represented simultaneously as life tracks in transition diagrams of concept lattices constructed from the mRNA measurements for small sets of interesting genes. Biologically interesting differences between the two groups of patients are revealed. The transition diagrams are compared to literature and expert knowledge in order to explain the observed transitions by influences of certain proteins on gene transcription and to deduce new hypotheses concerning gene regulation.


Concept Lattice Boolean Network Conceptual Representation Transition Diagram Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., et al.: Molecular Biology of the Cell, with CD-ROM, 5th rev. edn. Taylor & Francis, London (2008)Google Scholar
  2. 2.
    Alsalameh, S., et al.: Preferential induction of prodestructive matrix metalloproteinase-1 and proinflammatory interleukin 6 and prostaglandin E2 in rheumatoid arthritis synovial fibroblasts via tumor necrosis factor receptor-55. J. Rheumatol. 30(8), 1680–1690 (2003)Google Scholar
  3. 3.
    Barwise, J.: The Situation in Logic. CSLI, Lecture Notes 17, Stanford (1989)Google Scholar
  4. 4.
    Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983); Deutsch: Situationen und Einstellungen: Grundlagen der Situationssemantik. De Gruyter, Berlin (1987)zbMATHGoogle Scholar
  5. 5.
    Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) FCA 2005. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Birkhoff, G.: Lattice Theory, 3rd edn. Amer. Math. Soc., Providence (1967)zbMATHGoogle Scholar
  7. 7.
    Cunnane, G., Fitzgerald, O., Beeton, C., Cawston, T.E., Bresnihan, B.: Early joint erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arthritis. Rheum. 44(10), 2263–2274 (2001)CrossRefGoogle Scholar
  8. 8.
    Dasu, M.R., Barrow, R.E., Spies, M., Herndon, D.N.: Matrix metalloproteinase expression in cytokine stimulated human dermal fibroblasts. Burns 29(3), 527–531 (2003)CrossRefGoogle Scholar
  9. 9.
    Ganter, B., Wille, R.: Conceptual Scaling. In: Roberts, F.S. (ed.) Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–167. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Motameny, S., Versmold, B., Schmutzler, R.: Formal Concept Analysis for the Identification of Combinatorial Biomarkers in Breast Cancer. In: Medina, R., Obiedkov, S.A. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 229–240. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Smolen, J.S., Stein, G.: Therapeutic Strategies for Rheumatoid Arthritis. Nature Reviews 2, 472–488 (2003)Google Scholar
  14. 14.
    Schütte, J., et al.: Jun-B inhibits and c-Fos stimulates the transforming and trans-activating activities of c-Jun. Cell 59(6), 987–997 (1989)CrossRefGoogle Scholar
  15. 15.
    Quan, T., He, T., Voorhees, J.J., Fisher, G.J.: Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J. Biol. Chem. 280(9), 8079–8085 (2005)CrossRefGoogle Scholar
  16. 16.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc. 58, 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  17. 17.
    White, L.A., Mitchell, T.I., Brinckerhoff, C.E.: Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim. Biophys. Acta. 1490(3), 259–268 (2000)CrossRefGoogle Scholar
  18. 18.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  19. 19.
    Wolff, K.E.: Temporal Concept Analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS 2001. International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 91–107. Stanford University, Palo Alto (2002)Google Scholar
  20. 20.
    Wolff, K.E.: Transitions in Conceptual Time Systems. International Journal of Computing Anticipatory Systems CHAOS 11, 398–412 (2002)Google Scholar
  21. 21.
    Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 341–353. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Wolff, K.E.: ‘Particles’ and ‘Waves’ as Understood by Temporal Concept Analysis. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 126–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wolff, K.E.: Turing Machine Representation in Temporal Concept Analysis. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 360–374. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis - Foundations and Applications. LNCS (LNAI), vol. 3626, pp. 127–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Wolff, K.E.: States of Distributed Objects in Conceptual Semantic Systems. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 250–266. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Wollbold, J., Huber, R., Pohlers, D., Koczan, D., Guthke, R., Kinne, R., Gausmann, U.: Adapted Boolean network models for extracellular matrix formation. BMC Systems Biology 3, 77 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Johannes Wollbold
    • 1
  • René Huber
    • 2
    • 3
  • Raimund Kinne
    • 2
  • Karl Erich Wolff
    • 4
  1. 1.Steinbeis Transfer Center for Proteome AnalysisRostockGermany
  2. 2.Experimental Rheumatology GroupUniversity Hospital JenaGermany
  3. 3.Institute of Clinical ChemistryHannover Medical SchoolHannoverGermany
  4. 4.Mathematics and Science FacultyUniversity of Applied SciencesDarmstadtGermany

Personalised recommendations