Advertisement

Distribution of Uranium Related to Particle Size of Phosphogypsum from Phosphoric Acid Production (Huelva, SW Spain)

  • Marusia Rentería-Villalobos
  • Ignacio Vioque
  • Juan Mantero
  • Guillermo Manjón
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

In this work, both uranium and some trace elements distribution along with particle sizes were studied on phosphogypsum, in order to improve the knowledge on the behavior of toxic elements. 238U and 234U concentrations were obtained by alpha spectrometry, whereas Cr, Cu, Zn, Sr, Y, Zr, Cd, Ba, and Pb were determined using X-ray fluorescence. Determination of toxic elements in phosphogypsum was obtained in bulk and in three particle fractions: coarse (> 53 μm), medium (53–20 μm) and fine (< 20 μm). Average values obtained in the different particle fractions for 238U were 100 Bq/kg in bulk, 94 Bq/kg in the coarse fraction, 115 Bq/kg in the medium one and 160 Bq/kg in the fine fraction. 234U concentration average values, in the same order, 105, 96, 121 and 174 Bq/kg, respectively. Elements such as Zn, Sr, Y, Zr, Ba and Pb tend to be concentrated in the fine fraction, whereas the Cd is distributed homogeneously in the three fractions. Results obtained by these techniques have demonstrated that the most toxic elements are not distributed homogeneously into phosphogypsum and that most of these elements are concentrated in the fine fraction (particles < 20 μm), which could be easily mobilized by leaching and/or erosion.

Keywords

Fine Fraction Toxic Element Phosphate Rock Particle Size Fraction Medium Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. .Abril, J.M., García-Tenorio, R., Manjón, G., 2009. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate. J. Hazard. Mater.: 164, 790–797.CrossRefGoogle Scholar
  2. Bolivar, J.P., Garcia-Tenorio, R., Garcia-Leon, M., 1995. Fluxes and distribution of natural radionuclides in the production and use of fertilizers. Appl. Radiat. Isot.: 46, 717–718.CrossRefGoogle Scholar
  3. Bolívar, J.P., Martín, J.E., García-Tenorio, R., Pérez-Moreno, J.P., Mas, J.L., 2009. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant. Appl. Radiat. Isot.: 67, 345–356.CrossRefGoogle Scholar
  4. Degirmencia, N., Okucu, A., Turabi, A., 2007. Application of phosphogypsum in soil stabilization. Build. Environ: 42, 3393–3398.CrossRefGoogle Scholar
  5. Hallstadius, L., 1984. A method for the electrodeposition of actinides. Nucl. Instrum. Methods in Phys. Res.: 223, 266–267.CrossRefGoogle Scholar
  6. Kuryatnyk, T., Angulski da Luz, C., Ambroise, J., Pera, J., 2008. Valorization of phosphogypsum as hydraulic binder. J. Hazard. Mater.: 160, 681–687.CrossRefGoogle Scholar
  7. Martín, J.E., García-Tenorio, R., Respaldiza, M.A., Ontalba, M.A., Bolívar, J.P., da Silva, M.F., 1999. TTPIXE analysis of phosphate rocks and phosphogypsum. Appl. Radiat. Isot.: 50, 445–449.CrossRefGoogle Scholar
  8. Papastefanou, C., Stoulos, S., Ioannidou, A., Manolopoulou, M., 2006. The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact.: 89, 188–198.CrossRefGoogle Scholar
  9. Pérez-López, R., Álvarez-Valero, A.M., Miguel Nieto, J., 2007. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J. Hazard. Mater.: 148, 745–750.CrossRefGoogle Scholar
  10. Rutherford, P.M., Dudas, M.J., Arocena, J.M., 1996. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci. Total Environ.: 180, 201–209.CrossRefGoogle Scholar
  11. Rutherford, P.M., Dudas, M.J., Arocena, M., 1995. Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources. Waste Manag. Res.: 13, 407–423.Google Scholar
  12. Rutherford, P.M., Dudas, M.J., Samek, R.A., 1994. Environmental impacts of phosphogypsum. Sci. Total Environ.: 149, 1–38.CrossRefGoogle Scholar
  13. Salbu, B., 2007. Speciation of radionuclides e analytical challenges within environmental impact and risk assessments. J. Environ. Radioact.: 96, 47–53.CrossRefGoogle Scholar
  14. Weterings, K., Janssen, J., 1985. Recovery of Uranium, Vanadium, Yttrium and Rare Earths from phosphoric acid by a precipitation method. Hydrometallurgy: 15, 173–190.CrossRefGoogle Scholar
  15. Wilde, E.W., Benemann, J.R., 1993. Bioremoval of heavy metals by the use of microalgae. Biatech. Adv.: 11, 781–812.CrossRefGoogle Scholar
  16. www1.fipr.state.fl.us/fipr/fipr1.nsf, 2004. 93-01-109, Utilization of Phosphogypsum to Enhance Biological Decomposition and Increase Capacity Recovery at Municipal Solid Waste Landfills. Chemical Processing & Phosphogypsum.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marusia Rentería-Villalobos
    • 1
  • Ignacio Vioque
    • 2
  • Juan Mantero
    • 2
  • Guillermo Manjón
    • 2
  1. 1.Advanced Material Research Center (CIMAV)ChihuahuaMexico
  2. 2.Applied Nuclear Physics Group, ETS Arquitectura, Departamento de Física Aplicada 2University of SevilleSevilleSpain

Personalised recommendations