Advertisement

Assessment of Distribution Coefficients (Кd) of Radionuclides of the Uranium-Thorium Chain in the Uranium Manufacturing Tailing Dumps

  • Valentyn Protsak
  • Valery Kasparov
  • Igor Maloshtan
  • Sviatoslav Levchuk
  • Vasyl Yoschenko
  • Irina Kalyabina
  • Olga Marinich
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

One of the problems related to maintaining the ecologically safe state of tailing dumps of uranium manufacturing is the radionuclides migration from the dumps with groundwaters. A convenient way for evaluation of this process is application of the semiquantitative models of sorption interaction, which are based on utilization of distribution coefficient (Кd) describing the radionuclides concentrations in solid phase and soil solution after reaching the equilibrium state in the system. Aim of this study was the experimental assessment of the radionuclides Кd in five tailing dumps of Prydniprovsky Chemical Plant (PCP).

Keywords

Distribution Coefficient Mobile Form Radionuclide Concentration Radionuclide Migration Charge Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ASTM Designation: D 4646-03 (2004) Standard test method for 24-h batch-type measurement of contaminant sorption by soils and sedimentsGoogle Scholar
  2. EPA 402-R-99-004 A (1999) Understanding variation in partition coefficient, Kd, values. Volume 1: The Kd model, methods of measurement, and application of geochemical reaction codesGoogle Scholar
  3. http://gems.web.psi.ch/overview.htmlGoogle Scholar
  4. Investigation and development of the RAW storage technology at the SE Barrier (2001) Analysis of safety of maintaining activities for storage of RAW. Tailing dump Western. Book #1. Evaluation of conditions of storage of RAWGoogle Scholar
  5. Karpov IK, Chudnenko KV, Kulik DA, Avchenko OV, Bychinski VA (2001) Minimization of Gibbs free energy in geochemical systems by convex programing. Geochemistry Int 39: 1108–1119Google Scholar
  6. Keum DK, Choi BJ, Baik MH, Hahn PS (2002) Uranium(VI) adsorption and transport in crushed granite. Environ Eng Res 7: 103–111CrossRefGoogle Scholar
  7. Meinrath A, Schneider P, Meinrath G (2003) Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. J Env Radioactivity 64: 175–193CrossRefGoogle Scholar
  8. Vandenhove H, Gil-Garcia C, Rigol A, Vidal M (2009) New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 2. Naturally occurring radionuclides. J Env Radioactivity 100: 697–703CrossRefGoogle Scholar
  9. Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60: 149–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Valentyn Protsak
    • 1
  • Valery Kasparov
    • 1
  • Igor Maloshtan
    • 1
  • Sviatoslav Levchuk
    • 1
  • Vasyl Yoschenko
    • 1
  • Irina Kalyabina
    • 2
  • Olga Marinich
    • 2
  1. 1.Ukrainian Institute of Agricultural Radiology of NUBiP of UkraineKievUkraine
  2. 2.Institute of Geochemistry of the Environment of NAS and MES of UkraineKievUkraine

Personalised recommendations