SpaceEx: Scalable Verification of Hybrid Systems

  • Goran Frehse
  • Colas Le Guernic
  • Alexandre Donzé
  • Scott Cotton
  • Rajarshi Ray
  • Olivier Lebeltel
  • Rodolfo Ripado
  • Antoine Girard
  • Thao Dang
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6806)

Abstract

We present a scalable reachability algorithm for hybrid systems with piecewise affine, non-deterministic dynamics. It combines polyhedra and support function representations of continuous sets to compute an over-approximation of the reachable states. The algorithm improves over previous work by using variable time steps to guarantee a given local error bound. In addition, we propose an improved approximation model, which drastically improves the accuracy of the algorithm. The algorithm is implemented as part of SpaceEx, a new verification platform for hybrid systems, available at spaceex.imag.fr. Experimental results of full fixed-point computations with hybrid systems with more than 100 variables illustrate the scalability of the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inf. 43(7), 451–476 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for refinement. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 37–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)MATHGoogle Scholar
  6. 6.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C., Waldmann, U., Wirtz, B.: Exact state set representations in the verification of linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear biological models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Frehse, G., Ray, R.: Design principles for an extendable verification tool for hybrid systems. In: ADHS (2009)Google Scholar
  10. 10.
    Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. Software Tools for Technology Transfer 1, 110–122 (1997)CrossRefMATHGoogle Scholar
  12. 12.
    Kurzhanski, A., Varaiya, P.: Reachability analysis for uncertain systems—the ellipsoidal technique. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms 9(3b), 347–367 (2002)MathSciNetMATHGoogle Scholar
  13. 13.
    Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. PhD thesis, Université Grenoble 1 - Joseph Fourier (2009)Google Scholar
  14. 14.
    Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Analysis: Hybrid Systems 4(2), 250–262 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Scholl, C., Disch, S., Pigorsch, F., Kupferschmid, S.: Computing optimized representations for non-convex polyhedra by detection and removal of redundant linear constraints. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 383–397. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, Chichester (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Goran Frehse
    • 1
  • Colas Le Guernic
    • 2
  • Alexandre Donzé
    • 1
  • Scott Cotton
    • 1
  • Rajarshi Ray
    • 1
  • Olivier Lebeltel
    • 1
  • Rodolfo Ripado
    • 1
  • Antoine Girard
    • 3
  • Thao Dang
    • 1
  • Oded Maler
    • 1
  1. 1.Verimag, CNRS / Université Grenoble 1 Joseph FourierGièresFrance
  2. 2.New York University CIMSNew YorkUSA
  3. 3.Laboratoire Jean KuntzmannUniversité de GrenobleFrance

Personalised recommendations