Advertisement

Fundus Imaging of AMD

  • R. F. SpaideEmail author
Chapter

Abstract

The advancement of the study of retinal diseases has been highly dependent on the expanding ability to image the ocular fundus. Monochromatic and color photography provided a means to photographically record the fundus.

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Fluorescein Angiography Indocyanine Green Polypoidal Choroidal Vasculopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spaide RF (1999) Fluorescein angiography. In: Spaide RF (ed) Diseases of the retina and vitreous. W.B. Saunders Co, Philadelphia, pp 29–38Google Scholar
  2. 2.
    Tittl MK, Slakter JS, Spaide RF, Sorenson J, Guyer D (1999) Indocyanine green videoangiography. In: Spaide RF (ed) Diseases of the retina and vitreous. W.B. Saunders Co, Philadelphia, pp 39–46Google Scholar
  3. 3.
    Holz F, Schmitz-Valckenberg S, Spaide RF, Bird AC (2007) Atlas of fundus autofluorescence imaging. Springer Verlag, Berlin/HeidelbergCrossRefGoogle Scholar
  4. 4.
    Delori FC, Dorey CK, Staurenghi G et al (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729PubMedGoogle Scholar
  5. 5.
    von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412CrossRefGoogle Scholar
  6. 6.
    Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86PubMedCrossRefGoogle Scholar
  7. 7.
    Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41(Suppl 2):15–28PubMedCrossRefGoogle Scholar
  8. 8.
    Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photo­chem Photobiol 61:448–453PubMedCrossRefGoogle Scholar
  9. 9.
    Suter M, Reme C, Grimm C et al (2000) Age-related macular degeneration. The lipofuscin component n-retinyl-n-­retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275(50):39625–39630PubMedCrossRefGoogle Scholar
  10. 10.
    Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989PubMedGoogle Scholar
  11. 11.
    Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem 275(38):29354–29360PubMedCrossRefGoogle Scholar
  12. 12.
    Fishkin N, Jang YP, Itagaki Y et al (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 1(7):1101–1105PubMedCrossRefGoogle Scholar
  13. 13.
    Dillon J, Wang Z, Avalle LB, Gaillard ER (2004) The photochemical oxidation of A2E results in the formation of a 5,8,5′,8′-bis-furanoid oxide. Exp Eye Res 79:537–542PubMedCrossRefGoogle Scholar
  14. 14.
    Avalle LB, Wang Z, Dillon JP, Gaillard ER (2004) Observation of A2E oxidation products in human retinal lipofuscin. Exp Eye Res 78:895–898PubMedCrossRefGoogle Scholar
  15. 15.
    Sparrow JR, Zhou J, Ben-Shabat S et al (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43:1222–1227PubMedGoogle Scholar
  16. 16.
    Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500PubMedCrossRefGoogle Scholar
  17. 17.
    Fox IJ, Wood EH (1957) Application of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye. Mayo Clin Proc 32:541–550Google Scholar
  18. 18.
    Kwiterovich KA, Maguire MG, Murphy RP et al (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–1142PubMedGoogle Scholar
  19. 19.
    Yannuzzi LA, Rohrer KT, Tindel LJ et al (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–617PubMedGoogle Scholar
  20. 20.
    Hope-Ross M, Yannuzzi LA, Gragoudas ES et al (1994) Adverse reactions due to indocyanine green. Ophthalmology 101:529–533PubMedGoogle Scholar
  21. 21.
    Obana A, Miki T, Hayashi K et al (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118(6):749–753PubMedGoogle Scholar
  22. 22.
    Fineman MS, Maguire JI, Fineman SW, Benson WE (2001) Safety of indocyanine green angiography during pregnancy: a survey of the retina, macula, and vitreous societies. Arch Ophthalmol 119:353–355PubMedGoogle Scholar
  23. 23.
    Costa DL, Huang SJ, Orlock DA et al (2003) Retinal-choroidal indocyanine green dye clearance and liver dysfunction. Retina 23:557–561PubMedCrossRefGoogle Scholar
  24. 24.
    Spaide R (2008) Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 28:5–35PubMedCrossRefGoogle Scholar
  25. 25.
    Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–1454PubMedCrossRefGoogle Scholar
  26. 26.
    Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology 117:303–312.e1PubMedCrossRefGoogle Scholar
  27. 27.
    Pauleikhoff D, Zuels S, Sheraidah GS et al (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553PubMedGoogle Scholar
  28. 28.
    Arnold JJ, Quaranta M, Soubrane G et al (1997) Indocyanine green angiography of drusen. Am J Ophthalmol 124:344–356PubMedGoogle Scholar
  29. 29.
    Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110:392–399PubMedCrossRefGoogle Scholar
  30. 30.
    Holz FG, Bellmann C, Margaritidis M et al (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:145–152PubMedCrossRefGoogle Scholar
  31. 31.
    Spaide RF, Leys A, Herrmann-Delemazure B et al (1999) Radiation-associated choroidal neovasculopathy. Ophthal­mology 106:2254–2260PubMedCrossRefGoogle Scholar
  32. 32.
    Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol 147:644–652PubMedCrossRefGoogle Scholar
  33. 33.
    Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053PubMedGoogle Scholar
  34. 34.
    Yannuzzi LA, Negrao S, Iida T et al (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434PubMedCrossRefGoogle Scholar
  35. 35.
    Gass JD, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–751PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt-Erfurth U, Michels S, Barbazetto I, Laqua H (2002) Photodynamic effects on choroidal neovascularization and physiological choroid. Invest Ophthalmol Vis Sci 43:830–841PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Vitreous-Retina-Macula Consultants of New YorkManhattan Eye, Ear, and Throat HospitalNew YorkUSA

Personalised recommendations