Advertisement

Histopathology

  • A. LommatzschEmail author
  • S. Wasmuth
  • D. Pauleikhoff
  • F. G. Holz
  • A. C. Bird
Chapter

Abstract

The basal membrane of the retinal pigment epithelium (RPE) is limited by Bruch’s membrane and the adjacent layer of the choroid, which is rich in capillaries. At the apical side the microvilli of the RPE are in close contact to the photoreceptor outer segment. There is a complicated metabolic exchange between the retina and choroid with the RPE as key player. In the recycling of pigment during the visual cycle, the shed discs of the photoreceptor outer segments are phagocytosed by the RPE cells. While the final metabolic products are directed to the choroid, the RPE also regulates the nutritional supply and the extracellular ionic microenvironment of the photoreceptors. The resulting osmotic depression contributes to retinal adhesion to the RPE and can thereby anticipate retinal detachment. The production and directed secretion of different growth factors contribute to the maintenance of the functional unit composed of the photoreceptors, RPE cell layer and choroid.

Keywords

Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Geographic Atrophy Photoreceptor Outer Segment Normal Ageing Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gamulescu MA, Renner AB, Helbig H (2009) Clinical manifestations of functional disturbances of the retinal pigment epithelium. Ophthalmologe 106:305–310PubMedCrossRefGoogle Scholar
  2. 2.
    Strauss O (2009) The role of retinal pigment epithelium in visual functions. Ophthalmologe 106:299–304PubMedCrossRefGoogle Scholar
  3. 3.
    Marshall J, Hussain AA, Starita C, Moore DJ, Patmore AL (1998) Ageing and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 669–692Google Scholar
  4. 4.
    Okubo A, Rosa RH Jr, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ (1999) The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Invest Ophthalmol Vis Sci 40:443–449PubMedGoogle Scholar
  5. 5.
    Green WR, Key SN 3rd (1977) Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 75:180–254PubMedGoogle Scholar
  6. 6.
    Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341PubMedCrossRefGoogle Scholar
  7. 7.
    Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol 100:686–697PubMedGoogle Scholar
  8. 8.
    Karwatowski WS, Jeffries TE, Duance VC, Albon J, Bailey AJ, Easty DL (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. Br J Ophthalmol 79:944–952PubMedCrossRefGoogle Scholar
  9. 9.
    Lommatzsch A, Hermans P, Muller KD, Bornfeld N, Bird AC, Pauleikhoff D (2008) Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 246:803–810Google Scholar
  10. 10.
    Wasmuth S, Lueck K, Baehler H, Lommatzsch A, Pauleikhoff D (2009) Increased vitronectin production by complement-stimulated human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50:5304–5309PubMedCrossRefGoogle Scholar
  11. 11.
    Vater CA, Harris ED Jr, Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochem J 181:639–645PubMedGoogle Scholar
  12. 12.
    Hamlin CR, Kohn RR (1971) Evidence for progressive, age-related structural changes in post-mature human collagen. Biochim Biophys Acta 236:458–467PubMedCrossRefGoogle Scholar
  13. 13.
    Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18:59–90PubMedCrossRefGoogle Scholar
  14. 14.
    Davis WL, Jones RG, Hagler HK (1981) An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. J Histochem Cytochem 29:601–608PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher RF (1987) The influence of age on some ocular basement membranes. Eye (Lond) 1(Pt 2):184–189CrossRefGoogle Scholar
  16. 16.
    Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779PubMedGoogle Scholar
  17. 17.
    Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632PubMedGoogle Scholar
  18. 18.
    Krishnamurti U, Rondeau E, Sraer JD, Michael AF, Tsilibary EC (1997) Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix. J Biol Chem 272:27966–27970PubMedCrossRefGoogle Scholar
  19. 19.
    Tian SF, Toda S, Higashino H, Matsumura S (1996) Glycation decreases the stability of the triple-helical strands of fibrous collagen against proteolytic degradation by pepsin in a specific temperature range. J Biochem 120:1153–1162PubMedCrossRefGoogle Scholar
  20. 20.
    Howard EW, Benton R, Ahern-Moore J, Tomasek JJ (1996) Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res 228:132–137PubMedCrossRefGoogle Scholar
  21. 21.
    Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P (1999) Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochem Biophys Res Commun 264:488–492PubMedCrossRefGoogle Scholar
  22. 22.
    Pauleikhoff D, Wojteki S, Muller D, Bornfeld N, Heiligenhaus A (2000) Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits. Ophthalmologe 97:243–250PubMedCrossRefGoogle Scholar
  23. 23.
    Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Ageing changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 97:171–178PubMedGoogle Scholar
  24. 24.
    Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112:402–406PubMedCrossRefGoogle Scholar
  25. 25.
    Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100:47–51PubMedGoogle Scholar
  26. 26.
    Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Ageing, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28:393–422PubMedCrossRefGoogle Scholar
  27. 27.
    Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274PubMedGoogle Scholar
  28. 28.
    Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest Ophthalmol Vis Sci 42:1592–1599PubMedGoogle Scholar
  29. 29.
    Wang L, Li CM, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA (2009) Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Invest Ophthalmol Vis Sci 50:870–877PubMedCrossRefGoogle Scholar
  30. 30.
    Bairati A Jr, Orzalesi N (1963) The ultrastructure of the pigment epithelium and of the photoreceptor-pigment epithelium junction in the human retina. J Ultrastruct Res 41:484–496PubMedCrossRefGoogle Scholar
  31. 31.
    Nakaizumi Y, Hogan MJ, Feeney L (1964) The ultrastructure of Bruch’s membrane. 3. The macular area of the human eye. Arch Ophthalmol 72:395–400PubMedCrossRefGoogle Scholar
  32. 32.
    Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741PubMedCrossRefGoogle Scholar
  33. 33.
    Huang JD, Presley JB, Chimento MF, Curcio CA, Johnson M (2007) Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch. Exp Eye Res 85:202–218PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson M, Dabholkar A, Huang JD, Presley JB, Chimento MF, Curcio CA (2007) Comparison of morphology of human macular and peripheral Bruch’s membrane in older eyes. Curr Eye Res 32:791–799PubMedCrossRefGoogle Scholar
  35. 35.
    Kamei M, Hollyfield JG (1999) TIMP-3 in Bruch’s membrane: changes during ageing and in age-related macular degeneration. Invest Ophthalmol Vis Sci 40:2367–2375PubMedGoogle Scholar
  36. 36.
    Ahir A, Guo L, Hussain AA, Marshall J (2002) Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 43:458–465PubMedGoogle Scholar
  37. 37.
    Guo L, Hussain AA, Limb GA, Marshall J (1999) Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Invest Ophthalmol Vis Sci 40:2676–2682PubMedGoogle Scholar
  38. 38.
    Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297PubMedGoogle Scholar
  39. 39.
    Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Exp Eye Res 62:565–572PubMedCrossRefGoogle Scholar
  40. 40.
    Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38:762–767PubMedGoogle Scholar
  41. 41.
    Pauleikhoff D, Sheraidah G, Marshall J, Bird AC, Wessing A (1994) Biochemical and histochemical analysis of age related lipid deposits in Bruch’s membrane. Ophthalmologe 91:730–734PubMedGoogle Scholar
  42. 42.
    Pauleikhoff D, Zuels S, Sheraidah GS, Marshall J, Wessing A, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553PubMedGoogle Scholar
  43. 43.
    Pauleikhoff D, Koch JM (1995) Prevalence of age-related macular degeneration. Curr Opin Ophthalmol 6:51–56PubMedCrossRefGoogle Scholar
  44. 44.
    Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina 19:141–147PubMedCrossRefGoogle Scholar
  45. 45.
    Capon MR, Marshall J, Krafft JI, Alexander RA, Hiscott PS, Bird AC (1989) Sorsby’s fundus dystrophy. A light and electron microscopic study. Ophthalmology 96:1769–1777PubMedGoogle Scholar
  46. 46.
    Fisher RF (1982) The water permeability of basement membrane under increasing pressure: evidence for a new theory of permeability. Proc R Soc Lond B Biol Sci 216:475–496PubMedCrossRefGoogle Scholar
  47. 47.
    Foulds WS (1976) Doyne Memorial Lecture, 1976. Clinical significance of trans-scleral fluid transfer. Trans Ophthalmol Soc U K 96:290–308PubMedGoogle Scholar
  48. 48.
    Martinez GS, Campbell AJ, Reinken J, Allan BC (1982) Prevalence of ocular disease in a population study of subjects 65 years old and older. Am J Ophthalmol 94:181–189PubMedGoogle Scholar
  49. 49.
    Coffey AJ, Brownstein S (1986) The prevalence of macular drusen in postmortem eyes. Am J Ophthalmol 102:164–171PubMedCrossRefGoogle Scholar
  50. 50.
    Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413PubMedCrossRefGoogle Scholar
  51. 51.
    Bressler NM, Bressler SB, Seddon JM, Gragoudas ES, Jacobson LP (1988) Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. Retina 8:109–114PubMedCrossRefGoogle Scholar
  52. 52.
    Barondes M, Pauleikhoff D, Chisholm IC, Minassian D, Bird AC (1990) Bilaterality of drusen. Br J Ophthalmol 74:180–182PubMedCrossRefGoogle Scholar
  53. 53.
    Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90:206–217PubMedCrossRefGoogle Scholar
  54. 54.
    Bird AC (1991) Doyne Lecture Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (Lond) 5(Pt 1):1–12CrossRefGoogle Scholar
  55. 55.
    Chen JC, Fitzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Invest Ophthalmol Vis Sci 33:334–340PubMedGoogle Scholar
  56. 56.
    Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in ageing. Invest Ophthalmol Vis Sci 35:2857–2864PubMedGoogle Scholar
  57. 57.
    Farkas TG, Sylvester V, Archer D (1971) The ultrastructure of drusen. Am J Ophthalmol 71:1196–1205PubMedGoogle Scholar
  58. 58.
    Loffler KU, Lee WR (1986) Basal linear deposit in the human macula. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 224:493–501Google Scholar
  59. 59.
    Campochiaro PA, Jerdon JA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Invest Ophthalmol Vis Sci 27:1615–1621PubMedGoogle Scholar
  60. 60.
    Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100:1519–1535PubMedGoogle Scholar
  61. 61.
    Kliffen M, Mooy CM, Luider TM, de Jong PT (1994) Analysis of carbohydrate structures in basal laminar deposit in ageing human maculae. Invest Ophthalmol Vis Sci 35:2901–2905PubMedGoogle Scholar
  62. 62.
    Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Lond) 2(Pt 5):552–577CrossRefGoogle Scholar
  63. 63.
    Marshall GE, Konstas AG, Reid GG, Edwards JG, Lee WR (1994) Collagens in the aged human macula. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 232:133–140Google Scholar
  64. 64.
    van der Schaft TL, de Bruijn WC, Mooy CM, Ketelaars DA, de Jong PT (1991) Is basal laminar deposit unique for age-related macular degeneration? Arch Ophthalmol 109:420–425PubMedCrossRefGoogle Scholar
  65. 65.
    van der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PT (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 232:40–46Google Scholar
  66. 66.
    Mullins RF, Johnson LV, Anderson DH, Hageman GS (1997) Characterization of drusen-associated glycoconjugates. Ophthalmology 104:288–294PubMedGoogle Scholar
  67. 67.
    Kliffen M, Mooy CM, Luider TM, Huijmans JG, Kerkvliet S, de Jong PT (1996) Identification of glycosaminoglycans in age-related macular deposits. Arch Ophthalmol 114:1009–1014PubMedCrossRefGoogle Scholar
  68. 68.
    Burns RP, Feeney-Burns L (1980) Clinico-morphologic correlations of drusen of Bruch’s membrane. Trans Am Ophthalmol Soc 78:206–225PubMedGoogle Scholar
  69. 69.
    Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92:615–627PubMedGoogle Scholar
  70. 70.
    Hogan MJ (1965) Macular diseases: pathogenesis. Electron microscopy of Bruch’s membrane. Trans Am Acad Ophthalmol Otolaryngol 69:683–690PubMedGoogle Scholar
  71. 71.
    Ishibashi T, Patterson R, Ohnishi Y, Inomata H, Ryan SJ (1986) Formation of drusen in the human eye. Am J Ophthalmol 101:342–353PubMedGoogle Scholar
  72. 72.
    Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27:184–193PubMedGoogle Scholar
  73. 73.
    Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649PubMedCrossRefGoogle Scholar
  74. 74.
    Mullins RF, Aptsiauri N, Hageman GS (2001) Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye (Lond) 15:390–395CrossRefGoogle Scholar
  75. 75.
    Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with ageing and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846PubMedGoogle Scholar
  76. 76.
    Sarks SH, Van Driel D, Maxwell L, Killingsworth M (1980) Softening of drusen and subretinal neovascularization. Trans Ophthalmol Soc U K 100:414–422PubMedGoogle Scholar
  77. 77.
    Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 63(Suppl):1–139PubMedGoogle Scholar
  78. 78.
    Miller H, Miller B, Ryan SJ (1986) Newly-formed subretinal vessels. Fine structure and fluorescein leakage. Invest Ophthalmol Vis Sci 27:204–213PubMedGoogle Scholar
  79. 79.
    Miller H, Miller B, Ryan SJ (1986) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci 27:1644–1652PubMedGoogle Scholar
  80. 80.
    Soubrane G, Coscas G, Francais C, Koenig F (1990) Occult subretinal new vessels in age-related macular degeneration. Natural history and early laser treatment. Ophthalmology 97:649–657PubMedGoogle Scholar
  81. 81.
    Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 126:59–69PubMedCrossRefGoogle Scholar
  82. 82.
    Hermans P, Lommatzsch A, Bomfeld N, Pauleikhoff D (2003) Angiographic-histological correlation of late exudative age-related macular degeneration. Ophthalmologe 100:378–383PubMedCrossRefGoogle Scholar
  83. 83.
    Lafaut BA, Aisenbrey S, Vanden Broecke C, Krott R, Jonescu-Cuypers CP, Reynders S, Bartz-Schmidt KU (2001) Clinicopathological correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear, and scarred tear. Br J Ophthalmol 85:454–460PubMedCrossRefGoogle Scholar
  84. 84.
    (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol 109:1242–1257Google Scholar
  85. 85.
    Bressler NM, Bressler SB, Gragoudas ES (1987) Clinical characteristics of choroidal neovascular membranes. Arch Ophthalmol 105:209–213PubMedCrossRefGoogle Scholar
  86. 86.
    Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1998) Characteristics of drusen and changes in Bruch’s membrane in eyes with age-related macular degeneration. Histological study. Ophthalmologe 95:73–79PubMedCrossRefGoogle Scholar
  87. 87.
    Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339PubMedGoogle Scholar
  88. 88.
    Grossniklaus HE, Green WR (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch Ophthalmol 116:745–749PubMedGoogle Scholar
  89. 89.
    Pauleikhoff D, Loffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 240:533–538Google Scholar
  90. 90.
    Archer DB, Gardiner TA (1981) Electron microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 91:433–457PubMedGoogle Scholar
  91. 91.
    Archer DB, Gardiner TA (1981) Morphologic fluorescein angiographic, and light microscopic features of experimental choroidal neovascularization. Am J Ophthalmol 91:297–311PubMedGoogle Scholar
  92. 92.
    Dastgheib K, Green WR (1994) Granulomatous reaction to Bruch’s membrane in age-related macular degeneration. Arch Ophthalmol 112:813–818PubMedCrossRefGoogle Scholar
  93. 93.
    Grossniklaus HE, Hutchinson AK, Capone A Jr, Woolfson J, Lambert HM (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101:1099–1111PubMedGoogle Scholar
  94. 94.
    Killingsworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye (Lond) 4(Pt 4):613–621CrossRefGoogle Scholar
  95. 95.
    Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefe’s archive for clinical and experimental ophthalmology. Albrecht Von Graefes Arch Klin Exp Ophthalmol 223:69–76Google Scholar
  96. 96.
    Penfold PL, Liew SC, Madigan MC, Provis JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 38:2125–2133PubMedGoogle Scholar
  97. 97.
    Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20:385–414PubMedCrossRefGoogle Scholar
  98. 98.
    Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI et al (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32:254–260PubMedCrossRefGoogle Scholar
  99. 99.
    Bird AC (1993) Choroidal neovascularisation in age-related macular disease. Br J Ophthalmol 77:614–615PubMedCrossRefGoogle Scholar
  100. 100.
    Bird AC, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc U K 105(Pt 6):674–682PubMedGoogle Scholar
  101. 101.
    Pauleikhoff D, Chen J, Bird AC, Wessing A (1992) The Bruch membrane and choroid. Angiography and functional characteristics in age-related changes. Ophthalmologe 89:39–44PubMedGoogle Scholar
  102. 102.
    Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729PubMedGoogle Scholar
  103. 103.
    Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the ageing retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699PubMedGoogle Scholar
  104. 104.
    Marshall J (1987) The ageing retina: physiology or pathology. Eye (Lond) 1(Pt 2):282–295CrossRefGoogle Scholar
  105. 105.
    Casswell AG, Kohen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol 69:397–403PubMedCrossRefGoogle Scholar
  106. 106.
    Lommatzsch A, Heimes B, Gutfleisch M, Spital G, Zeimer M, Pauleikhoff D (2009) Serous pigment epithelial detachment in age-related macular degeneration: comparison of different treatments. Eye (Lond) 23:2163–2168CrossRefGoogle Scholar
  107. 107.
    Arroyo JG, Yang L, Bula D, Chen DF (2005) Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol 139:605–610PubMedCrossRefGoogle Scholar
  108. 108.
    Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113:880–886PubMedCrossRefGoogle Scholar
  109. 109.
    Zacks DN, Zheng QD, Han Y, Bakhru R, Miller JW (2004) FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 45:4563–4569PubMedCrossRefGoogle Scholar
  110. 110.
    Chuang EL, Bird AC (1988) The pathogenesis of tears of the retinal pigment epithelium. Am J Ophthalmol 105:285–290PubMedGoogle Scholar
  111. 111.
    Starita C, Hussain AA, Marshall J (1995) Decreasing hydraulic conductivity of Bruch’s membrane: relevance to photoreceptor survival and lipofuscinoses. Am J Med Genet 57:235–237PubMedCrossRefGoogle Scholar
  112. 112.
    Hussain AA, Rowe L, Marshall J (2002) Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. J Opt Soc Am 19:166–172CrossRefGoogle Scholar
  113. 113.
    Bok D (1985) Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:1659–1694PubMedGoogle Scholar
  114. 114.
    Ho TC, Del Priore LV (1997) Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch’s membrane. Invest Ophthalmol Vis Sci 38:1110–1118PubMedGoogle Scholar
  115. 115.
    Rizzolo LJ (1991) Basement membrane stimulates the polarized distribution of integrins but not the Na, K-ATPase in the retinal pigment epithelium. Cell Regul 2:939–949PubMedGoogle Scholar
  116. 116.
    Kunze A, Abari E, Semkova I, Paulsson M, Hartmann U (2010) Deposition of nidogens and other basement membrane proteins in the young and ageing mouse retina. Ophthalmic Res 43:108–112PubMedCrossRefGoogle Scholar
  117. 117.
    Aisenbrey S, Zhang M, Bacher D, Yee J, Brunken WJ, Hunter DD (2006) Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Invest Ophthalmol Vis Sci 47:5537–5544PubMedCrossRefGoogle Scholar
  118. 118.
    Gass JD (1984) Pathogenesis of tears of the retinal pigment epithelium. Br J Ophthalmol 68:513–519PubMedCrossRefGoogle Scholar
  119. 119.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881PubMedCrossRefGoogle Scholar
  120. 120.
    Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Prog Retin Eye Res 26:263–301PubMedCrossRefGoogle Scholar
  121. 121.
    Barondes MJ, Pagliarini S, Chisholm IH, Hamilton AM, Bird AC (1992) Controlled trial of laser photocoagulation of pigment epithelial detachments in the elderly: 4 year review. Br J Ophthalmol 76:5–7PubMedCrossRefGoogle Scholar
  122. 122.
    Tsuboi S (1987) Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Invest Ophthalmol Vis Sci 28: 1776–1782PubMedGoogle Scholar
  123. 123.
    Hyman L, Schachat AP, He Q, Leske MC (2000) Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch Ophthalmol 118: 351–358PubMedGoogle Scholar
  124. 124.
    Neuner B, Wellmann J, Dasch B, Behrens T, Claes B, Dietzel M, Pauleikhoff D, Hense HW (2007) Modeling smoking history: a comparison of different approaches in the MARS study on age-related maculopathy. Ann Epidemiol 17:615–621PubMedCrossRefGoogle Scholar
  125. 125.
    Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31:291–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Lommatzsch
    • 1
    Email author
  • S. Wasmuth
    • 2
  • D. Pauleikhoff
    • 1
  • F. G. Holz
    • 3
  • A. C. Bird
    • 4
  1. 1.Department of OphthalmologySt. Franziskus HospitalMünsterGermany
  2. 2.Ophtha-Lab, Department of OphthalmologySt. Franziskus HospitalMünsterGermany
  3. 3.Department of OphthalmologyUniversity of BonnBonnGermany
  4. 4.Department of OphthalmologyMoorfields Eye HospitalLondonUK

Personalised recommendations