Advertisement

Combination Therapies for the Treatment of AMD

  • M. BarakatEmail author
  • N. Steinle
  • P. K. Kaiser
Chapter

Abstract

Exudative age-related macular degeneration (AMD) is the leading cause of blindness in people over 50 years of age in the Western world.

Keywords

Vascular Endothelial Growth Factor Triple Therapy Monotherapy Group Combination Therapy Group Intravitreal Ranibizumab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rubin GS et al (1994) Visual impairment and disability in older adults. Optom Vis Sci 71(12):750–760PubMedGoogle Scholar
  2. 2.
    Williams RA et al (1998) The psychosocial impact of macular degeneration. Arch Ophthalmol 116(4):514–520PubMedGoogle Scholar
  3. 3.
    Friedman DS et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572PubMedGoogle Scholar
  4. 4.
    Kourlas H et al (2007) Ranibizumab for the treatment of neovascular age-related macular degeneration: a review. Clin Ther 29(9):1850–1861PubMedGoogle Scholar
  5. 5.
    Klein R et al (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104(1):7–21PubMedGoogle Scholar
  6. 6.
    Zarbin MA, Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614PubMedGoogle Scholar
  7. 7.
    Pe’er J et al (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 72(6):638–645PubMedGoogle Scholar
  8. 8.
    Grunwald JE et al (2005) Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthal­mol Vis Sci 46(3):1033–1038PubMedGoogle Scholar
  9. 9.
    Yoshida S et al (2004) Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242(5):409–413PubMedGoogle Scholar
  10. 10.
    Spaide RF, Spaide RF (2006) Rationale for combination therapies for choroidal neovascularization. Am J Ophthalmol 141(1):149–156PubMedGoogle Scholar
  11. 11.
    Gille J, Gille J (2006) Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor - and growth factor receptor-targeted approaches. Exp Dermatol 15(3):175–186PubMedGoogle Scholar
  12. 12.
    Caprioni F et al (2007) Bevacizumab in the treatment of metastatic colorectal cancer. Future Oncol 3(2):141–148PubMedGoogle Scholar
  13. 13.
    Giaccone G, Giaccone G (2007) The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res 13(7):1961–1970PubMedGoogle Scholar
  14. 14.
    Mancuso A et al (2006) Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol 58(3):231–241PubMedGoogle Scholar
  15. 15.
    Han ES et al (2007) Bevacizumab in the treatment of ovarian cancer. Expert Rev Anticancer Ther 7(10):1339–1345PubMedGoogle Scholar
  16. 16.
    Taiwo BO, Taiwo BO (2006) Antiretroviral treatment: current approach and future prospects. Afr J Med Med Sci 35(Suppl):1–11PubMedGoogle Scholar
  17. 17.
    Sturmer M et al (2007) Quadruple nucleoside therapy with zidovudine, lamivudine, abacavir and tenofovir in the treatment of HIV. Antivir Ther 12(5):695–703PubMedGoogle Scholar
  18. 18.
    Weir MR, Weir MR (2008) Risk-based classification of hypertension and the role of combination therapy. J Clin Hypertens 10(1 Suppl 1):4–12Google Scholar
  19. 19.
    Elliott WJ, Elliott WJ (2008) What factors contribute to the inadequate control of elevated blood pressure? J Clin Hypertens 10(1 Suppl 1):20–26Google Scholar
  20. 20.
    Kaiser PK, Kaiser PK (2005) Verteporfin therapy in combination with triamcinolone: published studies investigating a potential synergistic effect. Curr Med Res Opin 21(5):705–713PubMedGoogle Scholar
  21. 21.
    Kaiser PK, Kaiser PK (2005) Steroids for choroidal neovascularization. Am J Ophthalmol 139(3):533–535PubMedGoogle Scholar
  22. 22.
    Bandi N et al (2001) Budesonide reduces vascular endothelial growth factor secretion and expression in airway (Calu-1) and alveolar (A549) epithelial cells. Eur J Pharmacol 425(2):109–116PubMedGoogle Scholar
  23. 23.
    Folkman J et al (1987) Angiostatic steroids. Method of ­discovery and mechanism of action. Ann Surg 206(3):374–383PubMedGoogle Scholar
  24. 24.
    Schmidt-Erfurth U et al (2000) Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol 45(3):195–214PubMedGoogle Scholar
  25. 25.
    Schmidt-Erfurth U et al (1994) Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101(12):1953–1961PubMedGoogle Scholar
  26. 26.
    Schlotzer-Schrehardt U et al (2002) Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Arch Clin Exp Ophthalmol 240(9):748–757PubMedGoogle Scholar
  27. 27.
    Schmidt-Erfurth U et al (2003) Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 44(10):4473–4480PubMedGoogle Scholar
  28. 28.
    Kaiser PK (2007) Verteporfin photodynamic therapy and anti-angiogenic drugs: potential for combination therapy in exudative age-related macular degeneration. Curr Med Res Opin 23(3):477–487PubMedGoogle Scholar
  29. 29.
    Verteporfin Roundtable Participants (2005) Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: update. Retina 25(2):119–134Google Scholar
  30. 30.
    Bressler NM et al (2001) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol 119(2):198–207PubMedGoogle Scholar
  31. 31.
    Verteporfin In Photodynamic Therapy Study Group (2001) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization–verteporfin in photodynamic therapy report. Am J Ophthalmol 131(5):541–560Google Scholar
  32. 32.
    Azab M et al (2005) Verteporfin therapy of subfoveal minimally classic choroidal neovascularization in age-related macular degeneration: 2-year results of a randomized clinical trial. Arch Ophthalmol 123(4):448–457PubMedGoogle Scholar
  33. 33.
    Adamis AP et al (2005) The role of vascular endothelial growth factor in ocular health and disease. Retina 25(2):111–118PubMedGoogle Scholar
  34. 34.
    Gragoudas ES et al (2004) Pegaptanib for neovascular ­age-related macular degeneration. N Engl J Med 351(27):2805–2816PubMedGoogle Scholar
  35. 35.
    Ruckman J et al (1998) 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273(32):20556–20567PubMedGoogle Scholar
  36. 36.
    Gaudreault J et al (2005) Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci 46(2):726–733PubMedGoogle Scholar
  37. 37.
    Rosenfeld PJ et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431PubMedGoogle Scholar
  38. 38.
    Brown DM et al (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444PubMedGoogle Scholar
  39. 39.
    Heier JS et al (2006) Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology 113(4):633, e1–e4PubMedGoogle Scholar
  40. 40.
    Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedGoogle Scholar
  41. 41.
    Waisbourd M et al (2007) Targeting vascular endothelial growth factor: a promising strategy for treating age-related macular degeneration. Drugs Aging 24(8):643–662PubMedGoogle Scholar
  42. 42.
    Avery RL et al (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthal­mology 113(3):363–372, e5PubMedGoogle Scholar
  43. 43.
    Bashshur ZF et al (2006) Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 142(1):1–9PubMedGoogle Scholar
  44. 44.
    Costa RA et al (2006) Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Invest Ophthalmol Vis Sci 47(10):4569–4578PubMedGoogle Scholar
  45. 45.
    Spaide RF et al (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26(4):383–390PubMedGoogle Scholar
  46. 46.
    Rich RM et al (2006) Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Retina 26(5):495–511PubMedGoogle Scholar
  47. 47.
    Slakter JS et al (2006) Anecortave acetate (15 milligrams) versus photodynamic therapy for treatment of subfoveal neovascularization in age-related macular degeneration. Ophthalmology 113(1):3–13PubMedGoogle Scholar
  48. 48.
    Clark AF, Clark AF (1997) AL-3789: a novel ophthalmic angiostatic steroid. Expert Opin Investig Drugs 6(12):1867–1877PubMedGoogle Scholar
  49. 49.
    Kwak N et al (2000) VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41(10):3158–3164PubMedGoogle Scholar
  50. 50.
    Shen J et al (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 13(3):225–234PubMedGoogle Scholar
  51. 51.
    Ciulla TA et al (2003) Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina 23(6):808–814PubMedGoogle Scholar
  52. 52.
    Campochiaro PA et al (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 17(2):167–176PubMedGoogle Scholar
  53. 53.
    Raicu M et al (1993) Radiation damage to endothelial cells in vitro, as judged by the micronucleus assay. Mutagenesis 8(4):335–339PubMedGoogle Scholar
  54. 54.
    Schilling H et al (1997) Long-term results after low dose ocular irradiation for choroidal haemangiomas. Br J Ophthalmol 81(4):267–273PubMedGoogle Scholar
  55. 55.
    Verma L et al (2000) New approaches in the management of choroidal neovascular membrane in age-related macular degeneration. Indian J Ophthalmol 48(4):263–278PubMedGoogle Scholar
  56. 56.
    Comer GM et al (2004) Current and future treatment options for nonexudative and exudative age-related macular degeneration. Drugs Aging 21(15):967–992PubMedGoogle Scholar
  57. 57.
    Zambarakji HJ et al (2006) Proton beam irradiation for neovascular age-related macular degeneration. Ophthalmology 113(11):2012–2019PubMedGoogle Scholar
  58. 58.
    Ciulla TA, Danis RP, Harris A (1998) Age-related macular degeneration: a review of experimental treatments. Surv Ophthalmol 43(2):134–146PubMedGoogle Scholar
  59. 59.
    Parsons JT et al (1994) Radiation retinopathy after external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 30(4):765–773PubMedGoogle Scholar
  60. 60.
    Brown GC et al (1982) Radiation retinopathy. Ophthalmology 89(12):1494–1501PubMedGoogle Scholar
  61. 61.
    Valmaggia C, Ries G, Ballinari P (2002) Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: a randomized clinical trial. Am J Ophthalmol 133(4):521–529PubMedGoogle Scholar
  62. 62.
    Sivagnanavel V et al (2004) Radiotherapy for neovascular age-related macular degeneration. Cochrane Database Syst Rev (4):CD004004Google Scholar
  63. 63.
    (1999) A prospective, randomized, double-masked trial on radiation therapy for neovascular age-related macular degeneration (RAD Study). Radiation Therapy for Age-related Macular Degeneration. Ophthalmology 106(12):2239–2247Google Scholar
  64. 64.
    Anders N et al (1998) Radiotherapy of exudative senile macular degeneration. A prospective controlled study. Ophthal­mologe 95(11):760–764PubMedGoogle Scholar
  65. 65.
    Eter N, Schuller H, Spitznas M (2001) Radiotherapy for age-related macular degeneration: is there a benefit for classic CNV? Int Ophthalmol 24(1):13–19PubMedGoogle Scholar
  66. 66.
    Bergink GJ et al (1998) A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in age-related macular degeneration: radiation versus observation. Graefes Arch Clin Exp Ophthalmol 236(5):321–325PubMedGoogle Scholar
  67. 67.
    Char DH et al (1999) Randomized trial of radiation for age-related macular degeneration. Am J Ophthalmol 127(5):574–578PubMedGoogle Scholar
  68. 68.
    Ciulla TA et al (2002) Proton therapy for exudative age-related macular degeneration: a randomized, sham-controlled clinical trial. Am J Ophthalmol 134(6):905–906PubMedGoogle Scholar
  69. 69.
    Marcus DM et al (2001) External beam irradiation of subfoveal choroidal neovascularization complicating age-related macular degeneration: one-year results of a prospective, double-masked, randomized clinical trial. Arch Ophthalmol 119(2):171–180PubMedGoogle Scholar
  70. 70.
    Kobayashi H, Kobayashi K (2000) Age-related macular degeneration: long-term results of radiotherapy for subfoveal neovascular membranes. Am J Ophthalmol 130(5):617–635PubMedGoogle Scholar
  71. 71.
    Hart PM et al (2002) Visual outcomes in the subfoveal radiotherapy study: a randomized controlled trial of teletherapy for age-related macular degeneration. Arch Ophthalmol 120(8):1029–1038PubMedGoogle Scholar
  72. 72.
    Kacperek A, Briggs M, Sheen M, Damato BE, Errington RD, Harding S (2001) Macular degeneration treatment at Clatterbridge Centre for oncology: treatment and preliminary results. Phys Med 17(Suppl 3):7–9Google Scholar
  73. 73.
    Postgens H, Bodanowitz S, Kroll P (1997) Low-dose radiation therapy for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 235(10):656–661PubMedGoogle Scholar
  74. 74.
    Spaide RF et al (1998) External beam radiation therapy for choroidal neovascularization. Ophthalmology 105(1):24–30PubMedGoogle Scholar
  75. 75.
    Stalmans P, Leys A, Van Limbergen E (1997) External beam radiotherapy (20 Gy, 2 Gy fractions) fails to control the growth of choroidal neovascularization in age-related macular degeneration: a review of 111 cases. Retina 17(6):481–492PubMedGoogle Scholar
  76. 76.
    Marcus DM et al (2004) Radiotherapy for recurrent choroidal neovascularisation complicating age related macular degeneration. Br J Ophthalmol 88(1):114–119PubMedGoogle Scholar
  77. 77.
    Marcus DM et al (2004) The age-related macular degeneration radiotherapy trial (AMDRT): one year results from a pilot study. Am J Ophthalmol 138(5):818–828PubMedGoogle Scholar
  78. 78.
    Barak A et al (2005) A phase I trial of stereotactic external beam radiation for subfoveal choroidal neovascular membranes in age-related macular degeneration. Br J Radiol 78(933):827–831PubMedGoogle Scholar
  79. 79.
    Flaxel CJ et al (2000) Proton beam irradiation of subfoveal choroidal neovascularisation in age-related macular degeneration. Eye (Lond) 14(Pt 2):155–164Google Scholar
  80. 80.
    Bekkering GE et al (2009) The effectiveness and safety of proton radiation therapy for indications of the eye: a systematic review. Strahlenther Onkol 185(4):211–221PubMedGoogle Scholar
  81. 81.
    Harding S, Sen J (2002) Percision low-dose proton beam radiotherapy of subfoveal choroidal neovascularization in age-related macular degeneration (abstract). American Academy of Ophthalmology, Orlando (281.abstract)Google Scholar
  82. 82.
    (1997) Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Pharmacological Therapy for Macular Degeneration Study Group. Arch Ophthalmol 115(7):865–872Google Scholar
  83. 83.
    Bellmann C et al (2003) Visual acuity and contrast sensitivity in patients with neovascular age-related macular degeneration. Results from the Radiation Therapy for Age-Related Macular Degeneration (RAD-) Study. Graefes Arch Clin Exp Ophthalmol 241(12):968–974PubMedGoogle Scholar
  84. 84.
    Finger PT et al (1999) Ophthalmic plaque radiotherapy for age-related macular degeneration associated with subretinal neovascularization. Am J Ophthalmol 127(2):170–177PubMedGoogle Scholar
  85. 85.
    Berta A, Vezendi L, Vamosi P (1995) Irradiation of macular subretinal neovascularization using Ruthenium applicators. Szemeset (Hung J Ophthalmol) 132:67–75Google Scholar
  86. 86.
    Finger PT et al (2003) Palladium-103 plaque radiation therapy for macular degeneration: results of a 7 year study. Br J Ophthalmol 87(12):1497–1503PubMedGoogle Scholar
  87. 87.
    Jaakkola A et al (2005) Strontium plaque brachytherapy for exudative age-related macular degeneration: three-year results of a randomized study. Ophthalmology 112(4):567–573PubMedGoogle Scholar
  88. 88.
    Avila MP et al (2009) Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina 29(2):157–169PubMedGoogle Scholar
  89. 89.
    Avila MP et al (2009) Twelve-month short-term safety and visual-acuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to age-related macular degeneration. Br J Ophthalmol 93(3):305–309PubMedGoogle Scholar
  90. 90.
    (1986) Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol 104(5):694–701Google Scholar
  91. 91.
    (1991) Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Macular Photocoagulation Study Group. Arch Ophthalmol 109(9):1220–1231Google Scholar
  92. 92.
    (1994) Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration. The influence of initial lesion size and initial visual acuity. Macular Photocoagulation Study Group. Arch Ophthalmol 112(4):480–488Google Scholar
  93. 93.
    Berger AS, Kaplan HJ (1992) Clinical experience with the surgical removal of subfoveal neovascular membranes. Short-term postoperative results. Ophthalmology 99(6):969–975; discussion 975–976PubMedGoogle Scholar
  94. 94.
    Thomas MA et al (1992) Surgical management of subfoveal choroidal neovascularization. Ophthalmology 99(6):952–968; discussion 975–976PubMedGoogle Scholar
  95. 95.
    Machemer R, Steinhorst UH (1993) Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 231(11):635–641PubMedGoogle Scholar
  96. 96.
    Algvere PV et al (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232(12):707–716PubMedGoogle Scholar
  97. 97.
    Gillies MC et al (1993) Treatment of choroidal neovascularisation in age-related macular degeneration with interferon alfa-2a and alfa-2b. Br J Ophthalmol 77(12):759–765PubMedGoogle Scholar
  98. 98.
    Kirkpatrick JN, Dick AD, Forrester JV (1993) Clinical experience with interferon alfa-2a for exudative age-related macular degeneration. Br J Ophthalmol 77(12):766–770PubMedGoogle Scholar
  99. 99.
    Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 19(3):361–372PubMedGoogle Scholar
  100. 100.
    Alon T et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028PubMedGoogle Scholar
  101. 101.
    Emerson MV, Lauer AK (2007) Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs 21(4):245–257PubMedGoogle Scholar
  102. 102.
    Nishijima K et al (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1):53–67PubMedGoogle Scholar
  103. 103.
    Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242(1):91–101PubMedGoogle Scholar
  104. 104.
    Shah GK, Sang DN, Hughes MS (2009) Verteporfin combination regimens in the treatment of neovascular age-related macular degeneration. Retina 29(2):133–148PubMedGoogle Scholar
  105. 105.
    Bergers G et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295PubMedGoogle Scholar
  106. 106.
    Bradley J et al (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis 10(2):141–148PubMedGoogle Scholar
  107. 107.
    Jo N et al (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168(6):2036–2053PubMedGoogle Scholar
  108. 108.
    Rogers AH et al (2002) Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 134(4):566–576PubMedGoogle Scholar
  109. 109.
    Schmidt-Erfurth U et al (2002) Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 120(6):835–844PubMedGoogle Scholar
  110. 110.
    Spaide RF et al (2003) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 110(8):1517–1525PubMedGoogle Scholar
  111. 111.
    Spaide RF et al (2005) Photodynamic therapy with verteporfin combined with intravitreal injection of triamcinolone acetonide for choroidal neovascularization. Ophthal­mology 112(2):301–304PubMedGoogle Scholar
  112. 112.
    (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical ­trials–TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Arch Ophthalmol 117(10):1329–1345Google Scholar
  113. 113.
    Gillies MC et al (2004) Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol 122(3):336–340PubMedGoogle Scholar
  114. 114.
    Rechtman E et al (2004) Intravitreal triamcinolone with photodynamic therapy for subfoveal choroidal neovascularisation in age related macular degeneration. Br J Ophthalmol 88(3):344–347PubMedGoogle Scholar
  115. 115.
    Moshfeghi A, Puliafito C, R. P (2004) Combination verteporfin therapy and intravitreal triamcinolone neovascular age-related macular degeneration. In: 2004 Meeting of the Retina Society, BaltimoreGoogle Scholar
  116. 116.
    Roth D, Walsman S, Modi A et al (2004) Intravitreal triamcinolone combined with photodynamic therapy for exudative macular degeneration. In: 2004 Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology, New OrleansGoogle Scholar
  117. 117.
    Augustin A, Schmidt-Erfurth U (2004) PDT and triamcinolone for the treatment of occult CNV in AMD. In: 27th Annual Macula Society Meeting, Las VegasGoogle Scholar
  118. 118.
    El Matri L, Baklouti K, Mghaieth F et al (2004) Photodynamic therapy and intravitreal triamcinolone for exudative [sic] age related macular degeneration. Invest Ophthalmol Vis Sci 45(E-Abstract):3162Google Scholar
  119. 119.
    Johnson R, Yang S, McDonald HR, Ai E, Jumper JM (2004) Combined photodynamic therapy and intravitreal triamcinolone acetonide for AMD. In: 2004 Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology, New OrleansGoogle Scholar
  120. 120.
    Bhavsar A (2004) Combined verteporfin therapy and intravitreal triamcinolone in the treatment of minimally classic subfoveal CNV with or without RAP lesions. In: 2004 Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology, New OrleansGoogle Scholar
  121. 121.
    Spaide R, Sorenson J, Maranan L (2004) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone for juxtafoveal and extrafoveal choroidal neovascularization. In: 2004 Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology, New OrleansGoogle Scholar
  122. 122.
    Chan WM et al (2006) Combined photodynamic therapy and intravitreal triamcinolone injection for the treatment of subfoveal choroidal neovascularisation in age related ­macular degeneration: a comparative study. Br J Ophthalmol 90(3):337–341PubMedGoogle Scholar
  123. 123.
    Ergun E et al (2006) Photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide in the treatment of neovascular age-related macular degeneration. Am J Ophthalmol 142(1):10–16PubMedGoogle Scholar
  124. 124.
    Arias L et al (2006) Photodynamic therapy with intravitreal triamcinolone in predominantly classic choroidal neovascularization: one-year results of a randomized study. Ophthalmology 113(12):2243–2250PubMedGoogle Scholar
  125. 125.
    Ruiz-Moreno JM et al (2007) Photodynamic therapy and high-dose intravitreal triamcinolone to treat exudative age-related macular degeneration: 2-year outcome. Retina 27(4):458–461PubMedGoogle Scholar
  126. 126.
    Maberley D et al (2009) Photodynamic therapy and intravitreal triamcinolone for neovascular age-related macular degeneration: a randomized clinical trial. Ophthalmology 116(11):2149–2157, e1PubMedGoogle Scholar
  127. 127.
    Eyetech_Pharma (2004) Division of Anti-inflammatory, Analgesic and Ophthalmic Drug Products Advisory Committee Meeting Briefing Package for Macugen 2004. Available from http://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4053B1_02_FDA-Backgrounder.pdf. Cited 28 April 2010
  128. 128.
    Antoszyk AN et al (2008) Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration (FOCUS): year 2 results. Am J Ophthalmol 145(5):862–874PubMedGoogle Scholar
  129. 129.
    Lazic R et al (2007) Verteporfin therapy and intravitreal bevacizumab combined and alone in choroidal neovascularization due to age-related macular degeneration. Ophthal­mology 114(6):1179–1185PubMedGoogle Scholar
  130. 130.
    Kaiser PK et al (2009) Verteporfin photodynamic therapy combined with intravitreal bevacizumab for neovascular age-related macular degeneration. Ophthalmology 116(4):747–755PubMedGoogle Scholar
  131. 131.
    Kaiser PK, Kaiser PK (2010) Combination therapy with verteporfin and anti-VEGF agents in neovascular age-related macular degeneration: where do we stand? Br J Ophthalmol 94(2):143–145PubMedGoogle Scholar
  132. 132.
    QLT (2009) QLT Announces 12-month results from Novartis sponsored MONT BLANC Study evaluating standard-fluence VISUDYNE® combination therapy. Available from http://www.qltinc.com/newsCenter/2009/090615.htm. Cited 28 April 2010
  133. 133.
    Augustin AJ et al (2007) Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina 27(2):133–140PubMedGoogle Scholar
  134. 134.
    Yip PP et al (2009) Triple therapy for neovascular age-related macular degeneration using single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone. Br J Ophthalmol 93(6):754–758PubMedGoogle Scholar
  135. 135.
    Ehmann D et al (2010) Triple therapy for neovascular age-related macular degeneration (verteporfin photodynamic therapy, intravitreal dexamethasone, and intravitreal bevacizumab). Can J Ophthalmol 45(1):36–40PubMedGoogle Scholar
  136. 136.
    Bakri SJ et al (2009) Same-day triple therapy with photodynamic therapy, intravitreal dexamethasone, and bevacizumab in wet age-related macular degeneration. Retina 29(5):573–578PubMedGoogle Scholar
  137. 137.
    Ahmadieh H et al (2007) Single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone for neovascular age-related macular degeneration. BMC Ophthalmol 7:10PubMedGoogle Scholar
  138. 138.
    Clinicaltrials.gov (2010) Reduced fluence visudyne-anti-VEGF-dexamethasone in combination for AMD lesions (RADICAL). Available from http://www.clinicaltrials.gov/ct2/show/NCT00492284. Cited 28 April 2010
  139. 139.
    Verin V et al (2001) Endoluminal beta-radiation therapy for the prevention of coronary restenosis after balloon angioplasty. The Dose-Finding Study Group. N Engl J Med 344(4):243–249PubMedGoogle Scholar
  140. 140.
    Kirwan JF et al (2003) Beta irradiation: new uses for an old treatment: a review. Eye 17(2):207–215PubMedGoogle Scholar
  141. 141.
    Wachsberger P et al (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular ­targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9(6):1957–1971PubMedGoogle Scholar
  142. 142.
    Bischof M et al (2004) Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells. Int J Radiat Oncol Biol Phys 60(4):1220–1232PubMedGoogle Scholar
  143. 143.
    Dugel PU (2009) Radiation therapy for exudative AMD as an operating room based therapy. In: Annual Meeting of the American Academy of Ophthalmology, San FranciscoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Cole Eye Institute, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations