Advertisement

Microperimetry

  • E. MidenaEmail author
  • E. Pilotto
Chapter

Abstract

Irreversible and severe visual loss may represent the end stage of advanced age-related macular degeneration(AMD). The progression of visual impairment and the quanti fi cation of fi nal residual visual function are currently determined by means of diagnostic tests which rely on the physiological and mathematical principles of psychophysics [1]. The best known of these tests is the quanti fi cation of visual acuity: a classic psychophysical test.

Keywords

Retinal Pigment Epithelium Scanning Laser Ophthalmoscope Retinal Sensitivity Foveal Avascular Zone Macular Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Neelam K, Nolan J, Chakravarthy U (2009) Psychophysical function in age-related maculopathy. Surv Ophthalmol 54:167–210PubMedCrossRefGoogle Scholar
  2. 2.
    Pilotto E, Midena E (2007) Scanning laser microperimetry. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack Incorporated, Thorofare, pp 7–12Google Scholar
  3. 3.
    Midena E, Convento E, Radin PP et al (2007) Macular ­automatic fundus perimetry threshold versus standard perimetry threshold. Eur J Ophthalmol 17:65–68Google Scholar
  4. 4.
    Midena E, Radin PP, Convento E (2007) Liquid crystal ­display microperimetry. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack incorporated, Thorofare, pp 15–25Google Scholar
  5. 5.
    Weingessel B, Sacu S, Vecsei-Marlovits PV et al (2009) Interexaminer and intraexaminer reliability of the microperimeter MP-1. Eye (Lond) 23:1052–1058CrossRefGoogle Scholar
  6. 6.
    Rohrschneider K, Springer C, Bultmann S et al (2005) Microperimetry–comparison between the micro perimeter 1 and scanning laser ophthalmoscope–fundus perimetry. Am J Ophthalmol 139:125–134PubMedCrossRefGoogle Scholar
  7. 7.
    Midena E, Vujosevic S, Cavarzeran F, Microperimetry Study Group (2010) Normal values for fundus perimetro with the microperimeter MP1. Ophthalmology 117:1571–1576, 1576.e1PubMedCrossRefGoogle Scholar
  8. 8.
    Fujii GY, De Juan E Jr, Humayun MS et al (2003) Characteristics of visual loss by scanning laser opthalmoscope microperimetry in eyes with subfoveal choroidal neovascul­arization secondary to age-related macular degene­ration. Am J Ophthalmol 136:1067–1078PubMedCrossRefGoogle Scholar
  9. 9.
    Bellmann C, Feely M, Crossland MD, Kabanarou SA, Rubin GS (2004) Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. Ophthalmology 111:2265–2270PubMedCrossRefGoogle Scholar
  10. 10.
    Scilley K, Jackson GR, Cideciyan AV et al (2002) Early age-related maculopathy and self-reported visual difficulty in daily life. Ophthalmology 109:1235–1242PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson PT, Brown MN, Pulliam BC et al (2005) Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Invest Ophthalmol Vis Sci 46:4788–4795PubMedCrossRefGoogle Scholar
  12. 12.
    Midena E, Vujosevic S, Convento E et al (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:499–503CrossRefGoogle Scholar
  13. 13.
    Schuman SG, Koreishi AF, Farsiu S et al (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with Spectral-Domain optical coherence tomography. Ophthalmology 116:488–496PubMedCrossRefGoogle Scholar
  14. 14.
    Sunness JS, Margalit E, Srikurnaran D et al (2007) The long-term natural history of geographic atrophy from age-related macular degeneration. Ophthalmology 114:271–277PubMedCrossRefGoogle Scholar
  15. 15.
    Schmitz-Valckenberg S, Fleckenstein M, Helb HM et al (2009) In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3915–3921PubMedCrossRefGoogle Scholar
  16. 16.
    Pilotto E, Vujosevic S, Grigic AV et al (2010) Retinal function in patients with serpiginous choroiditis: a microperimetric study. Graefes Arch Clin Exp Ophthalmol 248(9):1331–1337PubMedCrossRefGoogle Scholar
  17. 17.
    Sunness JS, Applegate CA (2005) Long-term follow-up of fixation patterns in eyes with central scotoma from geographic atrophy associated with age-related macular degeneration. Am J Ophthalmol 140:1085–1093PubMedCrossRefGoogle Scholar
  18. 18.
    Holz FG, Bellman C, Staudt S et al (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056Google Scholar
  19. 19.
    Schmitz-Valckenberg S, Fleckenstein M, Scholl HP et al (2009) Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol 54:96–117PubMedCrossRefGoogle Scholar
  20. 20.
    Sholl HP, Bellman C, Dandekar SS, Bird AC et al (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:574–583CrossRefGoogle Scholar
  21. 21.
    Schmitz-Valckenberg S, Bültmann S, Dreyhaupt J et al (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4470–4476PubMedCrossRefGoogle Scholar
  22. 22.
    Bearelly S, Chau FY, Koreishi A et al (2009) Spectral Domain optical coherence tomography imaging of geographic atrophy margins. Ophthalmology 116:1762–1769PubMedCrossRefGoogle Scholar
  23. 23.
    Pilotto E, Vujosevic S, Melis R et al (2011) Short wavelength fundus autofluorescence versus near-infrared fundus autofluorescence, with microperimetric correspondence, in patients with geographic atrophy due to age-related macular degeneration. Br J Ophthalmol 95(8):1140–1144PubMedCrossRefGoogle Scholar
  24. 24.
    Vujosevic S, Midena E, Pilotto E et al (2006) Diabetic macular edema: correlation between microperimetry and Optical Coherence Tomography findings. Invest Ophthalmol Vis Sci 47:3044–3051PubMedCrossRefGoogle Scholar
  25. 25.
    Fujii GY, de Juan E, Sunness JS et al (2002) Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology 109:1737–1744PubMedCrossRefGoogle Scholar
  26. 26.
    Midena E, Radin PP, Pilotto E et al (2004) Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study. Semin Ophthalmol 19:55–61PubMedCrossRefGoogle Scholar
  27. 27.
    Guez Je, Le Gargasson JF, Rigaudiere F et al (1993) Is there a systematic location for the pseudofovea in patients with central scotoma? Vision Res 33:1271–1279PubMedCrossRefGoogle Scholar
  28. 28.
    Ergun E, Maar N, Radner W et al (2003) Scotoma size and reading speed in patients with subfoveal occult choroidal neovascularisation in age-related macular degeneration. Ophthalmology 110:65–69PubMedCrossRefGoogle Scholar
  29. 29.
    Doris N, Hart PM, Chakravarthy U et al (2001) Relation between macular morphology and visual function in patients with choroidal neovascularization of age related macular degeneration. Br J Ophthalmol 85:184–188PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen SY, Lamarque F, Saucet JC et al (2003) Filling-in phenomenon in patients with age-related macular degeneration: differences regarding uni-or bilaterality of central scotoma. Graefes Arch Clin Exp Ophthalmol 241:785–791PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt-Erfurth UM, Elser H, Terai N et al (2004) Effects of verteporfin therapy on central visual field function. Ophthalmology 111:931–939PubMedCrossRefGoogle Scholar
  32. 32.
    Shiraga F (2007) Neovascular age-related macular degeneration: medical treatment. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack incorporated, Thorofare, pp 7–12Google Scholar
  33. 33.
    Prager F, Michels S, Simader C et al (2008) Changes in retinal sensitivity in patients with neovascular age-related macular degeneration after systemic bevacizumab (Avastin) therapy. Retina 28:682–688PubMedCrossRefGoogle Scholar
  34. 34.
    Bolz M, Simader C, Ritter M et al (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration. Br J Ophthalmol 94:185–189PubMedCrossRefGoogle Scholar
  35. 35.
    Parravano MC, Oddone F, Tedeschi M et al (2009) Retinal functional changes measured by microperimetry in neovascular age-related macular degeneration patients treated with ranibizumab. Retina 29:329–334PubMedCrossRefGoogle Scholar
  36. 36.
    Parravano MC, Oddone F, Tedeschi M et al (2010) Retinal functional changes measured by microperimetry in neovascular age-related macular degeneration patients treated with ranibizumab. Retina [e-pub ahead of print]Google Scholar
  37. 37.
    Squirrel DM, Mawer NP, Mody Ch et al (2010) Visual ­outcome after intravitreal ranibizumab for wet age-related macular degeneration. A comparison between best-corrected visual acuity and microperimetry. Retina 30:436–442CrossRefGoogle Scholar
  38. 38.
    Loewenstein A, Sunness SS, Bressler NM et al (1998) Scanning laser ophthalmoscope fundus perimetry after ­surgery for choroidal neovascularization. Am J Ophthalmol 125:657–665PubMedCrossRefGoogle Scholar
  39. 39.
    Chieh JJ, Stinnett SS, Toth CA (2008) Central and pericentral retinal sensitivity after macular translocation surgery. Retina 28:1522–1529PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of PadovaPadovaItaly

Personalised recommendations