Advertisement

Optical Coherence Tomography

Chapter

Abstract

Advances of fundus images have resulted in better understanding of age-related macular degeneration (AMD) in the past.

Keywords

Optical Coherence Tomography Optical Coherence Tomography Imaging Geographic Atrophy Optical Coherence Tomography System Pigment Epithelium Detachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hee MR, Puliafito C, Carlton W, Duker J, Reichel E, Rutledge B, Schuman J, Swanson E, Fujimoto J (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113:1019–1029PubMedCrossRefGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  3. 3.
    Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229PubMedGoogle Scholar
  4. 4.
    Arvas S, Akar S, Yolar M, Yetik H, Kizilkaya M, Ozkan S (2002) Optical coherence tomography and angiography in patients with angioid streaks. Eur J Ophthalmol 12:473–481PubMedGoogle Scholar
  5. 5.
    Barbazetto I, Burdan A, Bressler NM, Bressler SB, Haynes L, Kapetanios AD, Lukas J, Olsen K, Potter M, Reaves A, Rosenfeld P, Schachat AP, Strong HA, Wenkenstern A (2003) Photodynamic therapy of subfoveal choroidal ­neovascularization with verteporfin: fluorescein angiographic guidelines for evaluation and treatment – TAP and VIP report No. 2. Arch Ophthalmol 121:1253–1268PubMedCrossRefGoogle Scholar
  6. 6.
    Brinkmann CK, Wolf S, Wolf-Schnurrbusch UE (2008) Multimodal imaging in macular diagnostics: combined OCT-SLO improves therapeutical monitoring. Graefes Arch Clin Exp Ophthalmol 246:9–16PubMedCrossRefGoogle Scholar
  7. 7.
    Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM (2004) Detection of diabetic foveal edema: contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol 122:330–335PubMedCrossRefGoogle Scholar
  8. 8.
    Chang LK, Koizumi H, Spaide RF (2008) Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes. Retina 28:969–975PubMedCrossRefGoogle Scholar
  9. 9.
    de Bruin DM, Burnes D, Loewenstein J, Chen Y, Chang S, Chen T, Esmaili D, de Boer JF (2008) In-vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci 49(10):4545–4552PubMedCrossRefGoogle Scholar
  10. 10.
    Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Finger RP, Scholl HP, Loeffler KU, Holz FG (2008) High resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 49(9):4137–4144PubMedCrossRefGoogle Scholar
  11. 11.
    Massin P, Duguid G, Erginay A, Haouchine B, Gaudric A (2003) Optical coherence tomography for evaluating ­diabetic macular edema before and after vitrectomy. Am J Ophthalmol 135:169–177PubMedCrossRefGoogle Scholar
  12. 12.
    Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S (2008) Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 49:3095–3099PubMedCrossRefGoogle Scholar
  13. 13.
    Yi K, Mujat M, Park BH, Sun W, Miller JW, Seddon JM, Young LH, de Boer JF, Chen TC (2008) Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age related macular degeneration. Br J Ophthalmol 93(2):176–181PubMedCrossRefGoogle Scholar
  14. 14.
    Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF (2000) Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 25:820–822PubMedCrossRefGoogle Scholar
  15. 15.
    Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF (2002) Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett 27:1415–1417PubMedCrossRefGoogle Scholar
  16. 16.
    Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121:695–706PubMedCrossRefGoogle Scholar
  17. 17.
    Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-­high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32:2049–2051PubMedCrossRefGoogle Scholar
  18. 18.
    Puvanathasan P, Forbes P, Ren Z, Malchow D, Boyd S, Bizheva K (2008) High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. Opt Lett 33:2479–2481PubMedGoogle Scholar
  19. 19.
    Legarreta JE, Gregori G, Knighton RW, Punjabi OS, Lalwani GA, Puliafito CA (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthalmol 145:1023–1030PubMedCrossRefGoogle Scholar
  20. 20.
    Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39:S43–S49PubMedGoogle Scholar
  21. 21.
    Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA (2007) In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 48:1808–1814PubMedCrossRefGoogle Scholar
  22. 22.
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746PubMedCrossRefGoogle Scholar
  23. 23.
    Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437PubMedCrossRefGoogle Scholar
  24. 24.
    Holz F, Wolfensberger T, Piquet B, Gross-Jendroska M, Wells J, Minassian D, Chisholm I, Bird A (1994) Bilateral macular drusen in age-related macular degeneration. Ophthalmology 101:1522–1528PubMedGoogle Scholar
  25. 25.
    Maguire P, Vine AK (1986) Geographic atrophy of the retinal pigment epithelium. Am J Ophthalmol 102:621–625PubMedGoogle Scholar
  26. 26.
    Sunness JS, Gonzalez-Baron J, Applegate CA, Bressler NM, Tian Y, Hawkins B, Barron Y, Bergman A (1999) Enlargement of atrophy and visual acuity loss in the ­geographic atrophy form of age-related macular degeneration. Ophthalmology 106:1768–1779PubMedCrossRefGoogle Scholar
  27. 27.
    Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056PubMedGoogle Scholar
  28. 28.
    Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR (1994) Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 14:130–142PubMedCrossRefGoogle Scholar
  29. 29.
    Green WR, Key SN (1977) Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 75:180–254PubMedGoogle Scholar
  30. 30.
    Macular Photocoagulation Study G (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the Macular Photocoagulation Study. Arch Ophthalmol 109:1242–1257CrossRefGoogle Scholar
  31. 31.
    Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444PubMedCrossRefGoogle Scholar
  32. 32.
    Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T (2009) Ranibizumab versus verteporfin ­photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116:57–65PubMedCrossRefGoogle Scholar
  33. 33.
    Mitchell PR, Korobelnik JF, Lanzetta P, Holz FG, Pruente C, Schmidt-Erfurth UM, Tano Y, Wolf S (2009) Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. Br J Ophthalmol 94(1):2–13PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neova­‑scular age-related macular degeneration. N Engl J Med 355:1419–1431PubMedCrossRefGoogle Scholar
  35. 35.
    Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 19:361–372PubMedGoogle Scholar
  36. 36.
    Lalwani GA, Rosenfeld PJ, Fung AE, Dubovy SR, Michels S, Feuer W, Davis JL, Flynn HW Jr, Esquiabro M (2009) A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol 148(43–58):e41Google Scholar
  37. 37.
    Rothenbuehler SP, Waeber D, Brinkmann CK, Wolf S, Wolf-Schnurrbusch UE (2009) Effects of ranibizumab in patients with subfoveal choroidal neovascularization attributable to age-related macular degeneration. Am J Ophthalmol 147:831–837PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of BernBernSwitzerland

Personalised recommendations