Actin Filament Segmentation Using Dynamic Programming

  • Hongsheng Li
  • Tian Shen
  • Xiaolei Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6801)


We introduce a novel algorithm for actin filament segmentation in 2D TIRFM image sequences. This problem is difficult because actin filaments dynamically change shapes during their growth, and the TIRFM images are usually noisy. We ask a user to specify the two tips of a filament of interest in the first frame. We then model the segmentation problem in an image sequence as a temporal chain, where its states are tip locations; given candidate tip locations, actin filaments’ body points are inferred by a dynamic programming method, which adaptively generates candidate solutions. Combining candidate tip locations and their inferred body points, the temporal chain model is efficiently optimized using another dynamic programming method. Evaluation on noisy TIRFM image sequences demonstrates the accuracy and robustness of this approach.


Candidate Location Dynamic Programming Method Body Point Likelihood Term Generate Candidate Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE TPAMI 12, 855–867 (1990)CrossRefGoogle Scholar
  2. 2.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. IJCV 24, 57–78 (1997)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, F., Huttenlocher, P., Efficient, D.P.: matching of pictorial structures. In: Proc. CVPR, vol. 2, pp. 66–73 (2000)Google Scholar
  4. 4.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Fujiwara, I., Takahashi, S., Tadakuma, H., Funatsu, T., Ishiwata, S.: Microscopic analysis of polymerization dynamics with individual actin filaments. Nat. Cell Biol. 4, 666–673 (2002)CrossRefGoogle Scholar
  6. 6.
    Fujiwara, I., Vavylonis, D., Pollard, T.D.: Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc. Natl. Acad. Sci. USA 104, 8827–8832 (2007)CrossRefGoogle Scholar
  7. 7.
    Hadjidemetriou, S., Toomre, D., Duncan, J.: Motion tracking of the outer tips of microtubules. Medical Image Analysis 12, 689–702 (2008)CrossRefGoogle Scholar
  8. 8.
    Kong, K., Marcus, A., Giannakakou, P., Wang, M.: Using particle filter to track and model microtubule dynamics. In: Proc. ICIP, vol. 5, pp. 517–520 (2007)Google Scholar
  9. 9.
    Li, H., Shen, T., Smith, M., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. In: Proc. ISBI (2009)Google Scholar
  10. 10.
    Li, H., Shen, T., Vavylonis, D., Huang, X.: Actin filament tracking based on particle filters and stretching open active contour models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 673–681. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Li, H., Shen, T., Vavylonis, D., Huang, X.: Actin filament segmentation using spatiotemporal active-surface and active-contour models. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 86–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Saban, M., Altinok, A., Peck, A., Kenney, C., Feinstein, S., Wilson, L., Rose, K., Manjunath, B.: Automated tracking and modeling of microtubule dynamics. In: Proc. ISBI, vol. 1, pp. 1032–1035 (2006)Google Scholar
  13. 13.
    Sargin, M.E., Altinok, A., Kiris, E., Feinstein, S.C., Wilson, L., Rose, K., Manjunath, B.S.: Tracing microtubules in live cell images. In: Proc. ISBI (2007)Google Scholar
  14. 14.
    Smal, I., Draegestein, K., Galjart, N., Niessen, W., Meijering, E.: Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis. IEEE TMI 27, 789–804 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongsheng Li
    • 1
  • Tian Shen
    • 1
  • Xiaolei Huang
    • 1
  1. 1.Department of Computer Science & EngineeringLehigh UniversityUSA

Personalised recommendations