Skip to main content

Identifying Nuclear Phenotypes Using Semi-supervised Metric Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

In systems–based approaches for studying processes such as cancer and development, identifying and characterizing individual cells within a tissue is the first step towards understanding the large–scale effects that emerge from the interactions between cells. To this end, nuclear morphology is an important phenotype to characterize the physiological and differentiated state of a cell. This study focuses on using nuclear morphology to identify cellular phenotypes in thick tissue sections imaged using 3D fluorescence microscopy. The limited label information, heterogeneous feature set describing a nucleus, and existence of sub-populations within cell-types makes this a difficult learning problem. To address these issues, a technique is presented to learn a distance metric from labeled data which is locally adaptive to account for heterogeneity in the data. Additionally, a label propagation technique is used to improve the quality of the learned metric by expanding the training set using unlabeled data. Results are presented on images of tumor stroma in breast cancer, where the framework is used to identify fibroblasts, macrophages and endothelial cells – three major stromal cells involved in carcinogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bissell, M.J., Radisky, D.: Putting tumours in context. Nature Reviews. Cancer 1(1), 46–54 (2001)

    Article  Google Scholar 

  2. Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3), 366–375 (1998)

    Article  Google Scholar 

  3. Brechbhler, C., Gerig, G., Kbler, O.: Parametrization of closed surfaces for 3-d shape description. Computer Vision and Image Understanding 61(2), 154–170 (1995)

    Article  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, New York (2001)

    MATH  Google Scholar 

  5. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 209–216 (2007)

    Google Scholar 

  6. Eaton, M.L.: Multivariate statistics: a vector space approach. Lecture notes-monograph series, vol. 53. Institute of Mathematical Statistics (1983)

    Google Scholar 

  7. Gladilin, E., Goetze, S., Mateos-Langerak, J., Van Driel, R., Eils, R., Rohr, K.: Shape normalization of 3D cell nuclei using elastic spherical mapping. Journal of Microscopy 231(Pt 1), 105–114 (2008)

    Article  MathSciNet  Google Scholar 

  8. Goldberger, J., Roweis, S., Hinton, G.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  9. Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 505–512. ACM, New York (2006)

    Google Scholar 

  10. Lichtman, J.W.: Fluorescence microscopy. Nature Methods 2(12) (2005)

    Google Scholar 

  11. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P.: Molecular Cell Biology, 6th edn. W.H. Freeman, New York (2007)

    Google Scholar 

  12. Megason, S.G., Fraser, S.E.: Imaging in Systems biology. Cell 130(5), 784–795 (2007)

    Article  Google Scholar 

  13. Rohde, G.K., Ribeiro, A.J.S., Dahl, K.N., Murphy, R.F.: Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells. Cytometry. Part A: the Journal of the International Society for Analytical Cytology 73(4), 341–350 (2008)

    Article  Google Scholar 

  14. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nature Methods 2(12), 905–909 (2005)

    Article  Google Scholar 

  15. Singh, S., Raman, S., Caserta, E., Leone, G., Ostrowski, M., Rittscher, J., Machiraju, R.: Analysis of Spatial Variation of Nuclear Morphology in Tissue Microenvironments. In: 2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, Los Alamitos (2010)

    Google Scholar 

  16. Slack, M.D., Martinez, E.D., Wu, L.F., Altschuler, S.J.: Characterizing heterogeneous cellular responses to perturbations. Proceedings of the National Academy of Sciences of the United States of America 105(49), 19306–19311 (2008)

    Article  Google Scholar 

  17. Styner, M., Oguz, I., Xu, S., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. Insight Journal, 1–20 (2006)

    Google Scholar 

  18. Trimboli, A.J., Cantemir-Stone, C.Z., Li, F., Wallace, J.A., Merchant, A., Creasap, N., Thompson, J.C., Caserta, E., Wang, H., Chong, J.L., Naidu, S., Wei, G., Sharma, S.M., Stephens, J.A., Fernandez, S.A., Gurcan, M.N., Weinstein, M.B., Barsky, S.H., Yee, L., Rosol, T.J., Stromberg, P.C., Robinson, M.L., Pepin, F., Hallett, M., Park, M., Ostrowski, M.C., Leone, G.: Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267), 1084–1091 (2009)

    Article  Google Scholar 

  19. Van Dongen, S.: A cluster algorithm for graphs (2000)

    Google Scholar 

  20. Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research 10, 207–244 (2009)

    MATH  Google Scholar 

  21. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  22. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, vol. 20, p. 912 (2003)

    Google Scholar 

  23. Zink, D., Fischer, A.H., Nickerson, J.A.: Nuclear structure in cancer cells. Nature reviews. Cancer 4(9), 677–687 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, S. et al. (2011). Identifying Nuclear Phenotypes Using Semi-supervised Metric Learning. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics