Skip to main content

CoRPORATE: Cortical Reconstruction by Pruning Outliers with Reeb Analysis and Topology-Preserving Evolution

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

In this paper we propose a novel system for the accurate reconstruction of cortical surfaces from magnetic resonance images. At the core of our system is a novel framework for outlier detection and pruning by integrating intrinsic Reeb analysis of Laplace-Beltrami eigen-functions with topology-preserving evolution for localized filtering of outliers, which avoids unnecessary smoothing and shrinkage of cortical regions with high curvature. In our experiments, we compare our method with FreeSurfer and illustrate that our results can better capture cortical geometry in deep sulcal regions. To demonstrate the robustness of our method, we apply it to over 1300 scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We show that cross-sectional group differences and longitudinal changes can be detected successfully with our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image. Anal. 12(1), 26–42 (2008)

    Article  Google Scholar 

  2. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis i: segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)

    Article  Google Scholar 

  3. Dubois, J., Benders, M., Borradori-Tolsa, C., et al.: Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131(8), 2028–2041 (2008)

    Article  Google Scholar 

  4. Han, X., Pham, D.L., Tosun, D., et al.: CRUISE: Cortical reconstruction using implicit surface evolution. NeuroImage 23, 997–1012 (2004)

    Article  Google Scholar 

  5. Han, X., Xu, C., Prince, J.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Machine Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  6. Kim, J.S., Singh, V., Lee, J.K., et al.: Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. NeuroImage 27, 210–221 (2005)

    Article  Google Scholar 

  7. Latecki, L.J.: 3D well-composed pictures. Graph. Models Image Process. 59(3), 164–172 (1997)

    Article  Google Scholar 

  8. Leung, K., Parker, D., Cunha, A., et al.: IRMA: An image registration meta-algorithm evaluating alternative algorithms with multiple metrics. In: Proc. Int. Conf. on Scientific and Statistical Data Base Management, pp. 612–617 (2008)

    Google Scholar 

  9. Mangin, J.F., Frouin, V., Bloch, I., et al.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)

    Article  Google Scholar 

  10. Mazziotta, J.C., Toga, A.W., Evans, A.C., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1293–1322 (2001)

    Article  Google Scholar 

  11. Mueller, S., Weiner, M., Thal, L., et al.: The Alzheimer’s disease neuroimaging initiative. Clin. North Am. 15, 869–877 (2005)

    Google Scholar 

  12. Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global medical shape analysis using the laplace-beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Patenaude, B.: Bayesian Statistical Models of Shape and Appearance for Subcortical Brain Segmentation. Ph.D. thesis, University of Oxford (2007)

    Google Scholar 

  14. Qiu, A., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans. Med. Imag. 25(10), 1296–1306 (2006)

    Article  Google Scholar 

  15. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int’l Journal of Computer Vision 89(2-3), 287–308 (2010)

    Article  Google Scholar 

  16. Shattuck, D., Leahy, R.: BrainSuite: An automated cortical surface identification tool. Med. Image. Anal. 8(2), 129–142 (2002)

    Article  Google Scholar 

  17. Shattuck, D., Mirza, M., Adisetiyo, V., et al.: Construction of a 3d probabilistic atlas of human brain structures. NeuroImage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  18. Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Trans. Image Processing 17(5), 645–657 (2008)

    Article  MathSciNet  Google Scholar 

  19. Shi, Y., Lai, R., Krishna, S., et al.: Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In: Proc. MMBIA, pp. 1–7 (2008)

    Google Scholar 

  20. Shi, Y., Lai, R., Morra, J., et al.: Robust surface reconstruction via laplace-beltrami eigen-projection and boundary deformation. IEEE Trans. Med. Imag. 29(12), 2009–2022 (2010)

    Article  Google Scholar 

  21. Shi, Y., Sun, B., Lai, R., Dinov, I., Toga, A.W.: Automated sulci identification via intrinsic modeling of cortical anatomy. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 49–56. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Siddiqi, K., Bouix, S., Tannebaum, A., Zuker, S.: Hamilton-Jacobi skeletons. Int’l Journal of Computer Vision 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  23. Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imag. 17(1), 87–97 (1998)

    Article  Google Scholar 

  24. Thompson, P.M., Hayashi, K.M., Sowell, E.R., et al.: Mapping cortical change in alzheimer’s disease, brain development, and schizophrenia. NeuroImage 23, S2–S18 (2004)

    Article  Google Scholar 

  25. Uhlenbeck, K.: Generic properties of eigenfunctions. Amer. J. of Math. 98(4), 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Essen, D.C., Drury, H.A., Joshi, S., Miller, M.I.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc. Natl. Acad. Sci. USA 95, 788–795 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Lai, R., Toga, A.W. (2011). CoRPORATE: Cortical Reconstruction by Pruning Outliers with Reeb Analysis and Topology-Preserving Evolution. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics