Venous Tree Separation in the Liver: Graph Partitioning Using a Non-ising Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6801)


Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.


Vessel Tree Separation Liver Ising Minimal Path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, C., Pock, T., Sorantin, E., Bischof, H., Beichel, R.: Segmentation of Interwoven 3D Tubular Tree Structures Utilizing Shape Priors and Graph Cuts. Medical Image Analysis 14(2), 172–184 (2009)CrossRefGoogle Scholar
  2. 2.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Couinaud, C.: Le Foie - Etudes anatomiques et chirurgicales. Masson (1957)Google Scholar
  4. 4.
    Fishman, E.K., Kuszyk, B.S., Heath, D.G., Gao, L.: Surgical Planning for Liver Resection. Computer 29(1), 64–72 (1996)CrossRefGoogle Scholar
  5. 5.
    Glombitza, G., Lamadé, W., Demiris, A.M., Göpfert, M.R., Mayer, A., Bahner, M.L., Meinzer, H.P., Richter, G., Lehnert, T., Herfarth, C.: Virtual Planning of Liver Resections: Image Processing, Visualization and Volumetric Evaluation. International Journal of Medical Informatics 53(2-3), 225–237 (1999)CrossRefGoogle Scholar
  6. 6.
    Grady, L.: Random Walks for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  7. 7.
    Gray, H.: Anatomy of the Human Body. Lea & Febiger, 1918, Philadelphia (2000)Google Scholar
  8. 8.
    Kaftan, J.N., Tek, H., Aach, T.: A Two-Stage Approach for Fully Automatic Segmentation of Venous Vascular Structures in Liver CT Images. In: SPIE Medical Imaging, vol. 7259, pp. 725911–1–12 (2009)Google Scholar
  9. 9.
    Kiraly, A.P., Helferty, J.P., Hoffman, E.A., McLennan, G., Higgins, W.E.: Three-Dimensional Path Planning for Virtual Bronchoscopy. IEEE Transactions on Medical Imaging 23(11), 1365–1379 (2004)CrossRefGoogle Scholar
  10. 10.
    Low, G., Wiebe, E., Walji, A.H., Bigam, D.L.: Imaging Evaluation of Potential Donors in Living-donor Liver Transplantation. Clinical Radiology 63(2), 136–145 (2008)CrossRefGoogle Scholar
  11. 11.
    Park, S., Bajaj, C., Gladish, G.: Artery-Vein Separation of Human Vasculature from 3D Thoracic CT Angio Scans. In: Computational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications (CompIMAGE), pp. 23–30 (2006)Google Scholar
  12. 12.
    Saha, P.K., Gao, Z., Alford, S.K., Sonka, M., Hoffman, E.A.: Topomorphologic Separation of Fused Isointensity Objects via Multiscale Opening: Separating Arteries and Veins in 3-D Pulmonary CT. IEEE Transactions on Medical Imaging 29(3), 840–851 (2010)CrossRefGoogle Scholar
  13. 13.
    Selle, D., Preim, B., Schenk, A., Peitgen, H.-O.: Analysis of Vasculature for Liver Surgical Planning. IEEE Transactions on Medical Imaging 21(11), 1344–1357 (2002)CrossRefGoogle Scholar
  14. 14.
    Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., Koehl, C., Dourthe, O., Malassagne, B., Smith, M., Mutter, D., Marescaux, J.: Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery. Computer Aided Surgery 6(3), 131–142 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenGermany
  3. 3.Section of Biomedical Image Analysis, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Computed TomographySiemens Healthcare SectorForchheimGermany

Personalised recommendations