Skip to main content

Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Abstract

This work addresses the challenging problem of simultaneously segmenting multiple anatomical structures in highly varied CT scans. We propose the entangled decision forest (EDF) as a new discriminative classifier which augments the state of the art decision forest, resulting in higher prediction accuracy and shortened decision time. Our main contribution is two-fold. First, we propose entangling the binary tests applied at each tree node in the forest, such that the test result can depend on the result of tests applied earlier in the same tree and at image points offset from the voxel to be classified. This is demonstrated to improve accuracy and capture long-range semantic context. Second, during training, we propose injecting randomness in a guided way, in which node feature types and parameters are randomly drawn from a learned (non-uniform) distribution. This further improves classification accuracy. We assess our probabilistic anatomy segmentation technique using a labeled database of CT image volumes of 250 different patients from various scan protocols and scanner vendors. In each volume, 12 anatomical structures have been manually segmented. The database comprises highly varied body shapes and sizes, a wide array of pathologies, scan resolutions, and diverse contrast agents. Quantitative comparisons with state of the art algorithms demonstrate both superior test accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  2. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213 (2009)

    Article  Google Scholar 

  4. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 142–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Proc. of CVPR, pp. 1–8 (2008)

    Google Scholar 

  6. Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 558–565. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Lempitsky, V.S., Verhoek, M., Noble, J.A., Blake, A.: Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography. In: Functional Imaging and Modeling of the Heart, pp. 447–456 (2009)

    Google Scholar 

  8. Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  10. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comp. Vision 81(1), 2–23 (2009)

    Article  Google Scholar 

  11. Tu, Z., Bai, X.: Auto-context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1744–1757 (2010)

    Article  Google Scholar 

  12. Tu, Z.: Probabilistic boosting tree: Learning discriminative models for classification, recognition, and clustering. In: Proc. of ICCV, pp. 1589–1596 (2005)

    Google Scholar 

  13. Zheng, Y., Georgescu, B., Comaniciu, D.: Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 411–422. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 36(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  15. Viola, P., Jones, M.J.: Robust Real-Time Face Detection. Int. J. Comp. Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  16. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) Challenge. Int. J. Comp. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  17. Rother, C., Kolmogorov, V., Blake, A.: GrabCut -Interactive Foreground Extraction using Iterated Graph Cuts. In: SIGGRAPH, vol. 23(3), pp. 309–314 (2004)

    Google Scholar 

  18. Criminisi, A., Sharp, T., Blake, A.: GeoS: Geodesic Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Konukoglu, E., Criminisi, A., Pathak, S., Robertson, D., White, S., Siddiqui, K.: Robust Linear Registration of CT Images using Random Regression Forests. In: SPIE Medical Imaging, vol. 7962, p. 79621X (2011)

    Google Scholar 

  20. Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT volumes. In: Proc. of MICCAI-PMMIA (2009)

    Google Scholar 

  21. Iglesias, J., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining Generative & Discriminative Models for Semantic Segmentation of CT Scans via Active Learning. In: Proc. of Info. Proc. In: Medical Imaging (2011)

    Google Scholar 

  22. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient Anatomy Detection and Localization in CT Scans, In: MICCAI-MCV Workshop (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A. (2011). Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics