Skip to main content

Abstract

Proteins are molecules especially susceptible to oxidative modifications owing to their abundance and reactivity to radicals. Amongst the protein oxidative (redox) changes, carbonylation of the molecules represents an irreversible process that leads to the lost of protein functionality. The bulk of carbonylated proteins are produced as a result of metal oxidative stress induction in plants. In addition, metal ions-catalyzed oxidation (MCO) systems have been used especially for the introduction of carbonyl groups in the protein molecules in vitro. The mechanism underlying protein carbonylation for redox active metals is the direct catalysis of reactive oxygen species (ROS) generation, while metals considered redox inactive act in decreasing the antioxidant defence system. Despite the fact that protein carbonylation is associated with general and random processes; recent advances indicate a great degree of selectivity in the protein oxidation process. In turn, there are proteins, such as catalase, that respond to metal-induced oxidative stress by regulating the translation of isoforms and thus inducing the synthesis of new subunits less sensitive to oxidation. Further, the intracellular level of oxidized proteins is the product of a balance between the rate of oxidation and the rate of degradation of proteins. Metals can alter plant cell capacity for removing damaged proteins. As part of the proteolytic system, the 20S proteasome is responsible for the proteolysis of the carbonylated proteins. The 20S proteasome activity is regulated through oxidative modification of the proteasome itself, where a moderate 20S protein oxidation increases its activity, but a severe oxidative condition decreases it, concomitantly producing oxidized protein accumulation. The widespread occurrence of protein modifications and regulated proteolysis, as well as the existence of regenerative mechanisms of oxidative modifications, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali FE, Barnham KJ, Barrow CJ, Separovic F (2004) Metal catalyzed oxidation of tyrosine residues by different oxidation systems of copper/hydrogen peroxide. J Inorg Biochem 98:173–184

    Article  PubMed  CAS  Google Scholar 

  • Amici M, Forti K, Nobili C, Lupidi G, Angeletti M, Fioretti E, Eleuteri AM (2002) Effect of neurotoxic metal ions on the proteolytic activities of the 20S proteasome form bovine brain. J Biol Inorg Chem 7:750–756

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Kwak Y, Simha R, Donaldson RP (2009) Hydrogen peroxide induced oxidation of peroxisomal malate synthase and catalase. Arch Biochem Biophys 491:25–31

    Article  PubMed  CAS  Google Scholar 

  • Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM (2007) Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol Biochem 45:589–595

    Article  PubMed  CAS  Google Scholar 

  • Azpilicueta CE, Pena LB, Tomaro ML, Gallego SM (2008) Modifications in catalase activity and expression in developing sunflower seedlings under cadmium stress. Redox Rep 13:40–46

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Austr J Plant Physiol 28:23–28

    Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284:187–194

    Article  CAS  Google Scholar 

  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Belmonte Pereira L, de Melazzo A, Mazzanti C, Gonçalves JF, Cargnelutti D, Tabaldi LA, Becker AG, Spanholi Calgaroto N, Gomes Farias J, Battisti V, Bohrer D, Nicoloso FT, Morsch VM, Schetinger MRC (2010) Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem 48:683–689

    Article  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Bridgewater JD, Vachet RW (2005) Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu–protein-binding sites. Anal Biochem 341:122–130

    Article  PubMed  CAS  Google Scholar 

  • Bridgewater JD, Lim J, Vachet RW (2006) Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10Å of the metal in Cu-binding proteins. J Am Soc Mass Spectrom 17:1552–1559

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiology, USA

    Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira JG, Battisti V, Redin M, Linares CE, Dressler VL, de Moraes Flores EM, Nicoloso FT, Morsch VM, Schetinger MR (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Dalling MJ (1986) Plant proteolytic enzymes. CRC Press, USA

    Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–787

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Lim C (2008) Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys 37:97–116

    Article  PubMed  CAS  Google Scholar 

  • Eising R, Trelease RN, Ni W (1990) Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons. Arch Biochem Biophys 278:258–264

    Article  PubMed  CAS  Google Scholar 

  • Engel N, Schmidt M, Lütz C, Feierabend J (2006) Molecular identification, heterologous expression and properties of light-insensitive plant catalases. Plant Cell Environ 29:593–607

    Article  PubMed  CAS  Google Scholar 

  • Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6:105–134

    Article  PubMed  CAS  Google Scholar 

  • Finley EL, Dillon J, Crouch RK, Schey KL (1998) Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci 7:2391–2397

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73:996–1003

    Article  PubMed  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ions excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plantarum 42:49–55

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (2002) Involvement of antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regul 36:17–21

    Article  Google Scholar 

  • Gallego SM, Kogan MJ, Azpilicueta CE, Peña C, Tomaro MT (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress. Plant Growth Regul 46:267–276

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively, modified proteins. Proteomics 3:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Baena G, Diez J, García-Fernández JM, El Alaoui S, Humanes L (2001) Regulation of glutamine synthetase by metal-catalyzed oxidative modification in the marine oxyphotobacterium Prochlorococcus. Biochim Biophys Acta 1568:237–244

    PubMed  Google Scholar 

  • Gonçalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:223–232

    Google Scholar 

  • Grotjohann N, Janning A, Eising R (1997) In vitro photoinactivation of catalase isoforms from cotyledons of sunflower (Helianthus annuus L.). Arch Biochem Biophys 346:208–218

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    Article  PubMed  CAS  Google Scholar 

  • Hardin SC, Larue CT, Oh MH, Jain V, Huber SC (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem J 422:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Schöneich C (2001) The metal-catalyzed oxidation of methionine in peptides by fenton systems involves two consecutive one-electron oxidation processes. Free Radic Biol Med 31:1432–1441

    Article  PubMed  CAS  Google Scholar 

  • Humanes L, García-Fernandez JM, López-Ruiz A, Diez J (1995) Glutamine synthetase from the green alga Monoraphidium braunii is regulated by oxidative modification. Plant Sci 110:269–277

    Article  CAS  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD, Benavides MP (2010) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245:15–27

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase by reactive oxygen species. J Biol Chem 274:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191–296

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Tybura A, Rychter AM (2008) Protein oxidation in the leaves and roots of cucumber plants (Cucumis sativus L.), mutant MSC16 and wild type. J Plant Physiol 165:355–365

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Kitamoto N, Kawal Y, Osawa T (2001) The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radic Biol Med 31:624–632

    Article  PubMed  CAS  Google Scholar 

  • Kharenko OA, Ogawa MY (2004) Metal-induced folding of a designed metalloprotein. J Inorg Biochem 98:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Rhee SG, Stadtman ER (1985) Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem 260:15394–15397

    PubMed  CAS  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi T, Miyazaki A, Suwan S, Isobe M (2001) Extensive investigations on oxidized amino acid residues in H2O2-treated Cu, Zn-SOD protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. J Am Chem Soc 123:9268–9278

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Toh-E A, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53:102–114

    Article  PubMed  CAS  Google Scholar 

  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156

    Article  CAS  Google Scholar 

  • Lancien M, Gadal P, Hodges M (2000) Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol 123:817–824

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Willams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9:3766–3780

    Article  PubMed  CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Miyazaki A, Sydnes MO, Isobe M, Ohinata H, Miyazu M, Takai A (2009) Oxidatively induced Cu for Mn exchange in protein phosphatase 1γ: a new method for active site analysis. Bioorg Med Chem 17:7978–7986

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Kristensen BK (2006) Protein oxidation in plant mitochondria detected as oxidized tryptophan. Free Radic Biol Med 40:430–435

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signaling-specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Murali Achary VM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  CAS  Google Scholar 

  • Nakano R, Ishida H, Makino A, Mae T (2006) In vivo fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions. Plant Cell Physiol 47:270–276

    Article  PubMed  CAS  Google Scholar 

  • Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies. Plant Physiol 119:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanità di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in Durum wheat plants. Plant Cell Physiol 49:362–374

    Article  PubMed  CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006a) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    Article  CAS  Google Scholar 

  • Pena LB, Tomaro ML, Gallego SM (2006b) Effect of different metals on protease activity in sunflower cotyledons. Electron J Biotech 9:258–262

    CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Pena LB, Zawoznik MS, Tomaro ML, Gallego SM (2008) Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere 72:741–746

    Article  PubMed  CAS  Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: activation in response to cadmium. J Biol Chem 284:35412–35424

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucl Acids Res 38:D227–D233

    Article  PubMed  CAS  Google Scholar 

  • Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  CAS  Google Scholar 

  • Requena JR, Chao CC, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 98:69–74

    Article  PubMed  CAS  Google Scholar 

  • Requena JR, Levine RL, Stadtman ER (2003) Recent advances in the analysis of oxidized proteins. Amino Acids 25:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Bécuwe N, Barrault MB, Rumeau D, Havaux M, Biteau B, Toledano MB (2007) The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response. Plant J 49:505–514

    Article  PubMed  CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cd-induced subcellular accumulation of O -2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Rouhier N, Vieira Dos Santos Ch, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247–262

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    PubMed  CAS  Google Scholar 

  • Sadineni V, Galeva NA, Schöneich C (2006) Characterization of the metal-binding site of human prolactin by site-specific metal-catalyzed oxidation. Anal Biochem 358:208–215

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  PubMed  CAS  Google Scholar 

  • Schöneich C (2000) Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J Pharm Biomed Anal 21:1093–1097

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Sharp JS, Becker JM, Hetticha RL (2003) Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal Biochem 313:216–225

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Davies KJA (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58:1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJA (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  PubMed  CAS  Google Scholar 

  • Simpson DJ (2001) Proteolytic degradation of cereal prolamins: the problem with proline. Plant Sci 161:825–838

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211

    PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates, USA

    Google Scholar 

  • Tan YF, O’Toole N, Taylor NL, Harvey Millar A (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152:747–761

    Article  PubMed  CAS  Google Scholar 

  • Temple A, Yen TY, Gronert S (2006) Identification of specific protein carbonylation sites in model oxidations of human serum albumin. J Am Soc Mass Spectrom 17:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7:400–407

    Article  PubMed  CAS  Google Scholar 

  • Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105

    Article  PubMed  CAS  Google Scholar 

  • Williams RJP (1997) The natural selection of the chemical elements. Cell Mol Life Sci 53:816–829

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Apiyo D, Wittung-Stafshede P (2004) Role of cofactors in metalloprotein folding. Q Rev Biophys 37:285–314

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107:3514–3543

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Orr WC, Sohal RJ (1998) Identification of oxidized proteins based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis, immunochemical detection, isoelectric focusing, and microsequencing. Anal Biochem 263:67–71

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Fu H, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279:6401–6413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Mabel Gallego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pena, L.B., Azpilicueta, C.E., Benavides, M.P., Gallego, S.M. (2012). Protein Oxidative Modifications. In: Gupta, D., Sandalio, L. (eds) Metal Toxicity in Plants: Perception, Signaling and Remediation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22081-4_10

Download citation

Publish with us

Policies and ethics