Advertisement

Different Representations of the Time Variable Gravity Field to Reduce the Aliasing Problem in GRACE Data Analysis

  • Torsten Mayer-Gürr
  • Enrico Kurtenbach
  • Annette Eicker
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 137)

Abstract

The projected accuracy of the GRACE satellite mission has not been reached yet. One reason among others is the inaccurate modelling of the temporal variations in the analysis procedure by monthly or weekly mean fields, which can be shown in a simple simulation scenario. Two approaches to improve the temporal modeling are presented here: on the one hand the representation in terms of continuous temporal basis functions and on the other hand the increase of the temporal resolution to daily gravity field solutions by the use of the Kalman filter approach.

Keywords

GRACE Time-variable gravity field Aliasing Kalman filter 

References

  1. Döll PF, Kaspar F, Kaspar B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation, J Hydrol 270:105–134CrossRefGoogle Scholar
  2. Eicker A (2008) Gravity Field Refinements by Radial Basis Functions from In-situ Satellite Data. Dissertation University of Bonn.Google Scholar
  3. Flechtner F, Dahle Ch, Neumayer KH, Koenig R, Foerste Ch (2009) The release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F, Gruber T, Guentner A, Mandea M, Rothacher M, Wickert J (eds) Satellite geodesy and earth system science – observation of the earth from space. Springer, Berlin, in preparationGoogle Scholar
  4. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys doi:10.1007/s10712-008-9038-yGoogle Scholar
  5. Hunger M, Döll P (2008) Value of river discharge data for global – scale hydrological modeling. Hydrol Earth Syst Sci 12:841–861CrossRefGoogle Scholar
  6. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME Series D J Basic Eng 82:35–45CrossRefGoogle Scholar
  7. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102, doi:10.1029/2009GL039564CrossRefGoogle Scholar
  8. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geodes 81:733–749CrossRefGoogle Scholar
  9. Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629, doi:10.1016/j.asr.2007.03.062CrossRefGoogle Scholar
  10. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnboegen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation at the University of Bonn.Google Scholar
  11. Mayer-Gürr T, Eicker A, Ilk KH (2007) ITG-Grace02s: A GRACE gravity field derived from short arcs of the satellites orbit. In: Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”, Istanbul, 193–198Google Scholar
  12. Tapley BD, Bettadpur S, Watkins M, Reigber Ch (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Torsten Mayer-Gürr
    • 1
  • Enrico Kurtenbach
    • 1
  • Annette Eicker
    • 1
  1. 1.Institute of Theoretical Geodesy and Satellite GeodesyGraz University of TechnologyGrazAustria

Personalised recommendations