Skip to main content

Multi Electrode Arrays (MEAs) and the Electrical Network of the Roots

  • Chapter
  • First Online:
Measuring Roots

Abstract

Electrically excitable cells are present in many multicellular organisms, especially in brains of animals, but also in lower animals such as sponges, which lack central nervous system and in animals having excitable epithelia, which can conduct signals via neuroid conduction. In plants, most cells are electrically excitable and active, releasing and propagating action potentials (APs), which may affect central physiological processes such as photosynthesis and respiration. The first report describing electrical signals in plants was published over 200 years ago on carnivorous plants. Since then, many researchers have made detailed analyses of the electrical activity of single cells by using microelectrodes for intracellular recordings. However, such techniques cannot address integrated issues of how large assembly of cells can combine information both spatially and temporally. This can be possible using a multi electrode array (MEA) approach, intensively used in neuroscience for any electrogenic animal tissues, and here presented as its first application also for plants tissues. The system allows noninvasive, long time and multisite recording and stimulation with high spatiotemporal resolution. After a short description of the MEA technique in terms of hardware and background, the chapter mainly focuses on the application of this technique in plant electrophysiology by showing some recent works concerning the study of both the intense spontaneous electrical activities and the stimulation-elicited bursts of locally propagating electrical signals generated by the root apex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Action Potential

DMSO:

Dimethyl Sulphoxide

DNQX:

6,7-Dinitroquinoxaline-2,4-dione

Gd3+ :

gadolinium

l-glu:

l-glutamate

MCS:

Multi Channel Systems®

Mer:

Meristem

MZ:

Mature Zone

S/N:

signal-to-noise

TiN:

Titanium nitride

TZ:

Transition Zone

References

  • Baluŝka F, Kubica S, Hauskrecht M (1990) Postmitotic “isodiametric” cell growth in the maize root apex. Planta 181:269–274

    Article  Google Scholar 

  • Beilby M (2007) Action potential in charophytes. Int Rev Cytol 257:43–82

    Article  PubMed  CAS  Google Scholar 

  • Bertholon ML (1783) De l’Electricité des Végétaux: Ouvrage dans lequel on traite de l’electricite de l’atmosphere sur les plantes, de ses effets sur l’economie des vegetaux, de leurs vertus medicaux (P.F. Didotjeune, Paris)

    Google Scholar 

  • Blinks LR (1930) The direct current resistance of Nitella. J Gen Physiol 13:495–508

    Article  PubMed  CAS  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of a leaf of Dionaea muscipula. Proc R Soc London 21:495–496

    Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    Article  PubMed  CAS  Google Scholar 

  • Egert U, Heck D, Aertsen A (2002) Two-dimensional monitoring of spiking networks in acute brain slices. Exp Brain Res 142:268–274

    Article  PubMed  Google Scholar 

  • Favre P, Krol E, Stolarz M, Szarek I, Greppin H, Trebacz K, Degli Agosti R (1999) Action potentials elicited in the liverwort Conocephalum conicum (Hepaticae) with different stimuli. Arch Sci 52:175–185

    Google Scholar 

  • Felle H, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Friedman PA (2002) Novel mapping techniques for cardiac electrophysiology. Heart 87:575–582

    Article  PubMed  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RJ (2007) An introduction to nervous systems. Cold Spring Harbor Laboratory, Cold Spring Harbor, USA

    Google Scholar 

  • Hampson RE, Simeral JD, Deadwyler SA (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402:610–614

    Article  PubMed  CAS  Google Scholar 

  • Heuschkel MO, Wirth C, Steidl EM, Buisson B (2006) Development of 3D multi electrode arrays for use with acute tissue slices. In: Taketani M, Baudry M (eds) Advances in network electrophysiology using multi-electrode arrays. Springer, Germany, pp 69–111

    Chapter  Google Scholar 

  • Heuschkel MO, Fejtl M, Raggenbass M, Bertrand D, Renaud P (2002) A three dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Meth 114(2):135–148

    Article  Google Scholar 

  • Jimbo Y, Kasai N, Torimitsu K, Tateno T, Robinson HPC (2003) A system for MEA-based multisite stimulation. IEEE Trans Biomed Eng 50:241–248

    Article  PubMed  Google Scholar 

  • Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–203

    Article  PubMed  CAS  Google Scholar 

  • Leys SP, Mackie GO (1997) Electric recording from a glass sponge. Nature 387:29–30

    Article  CAS  Google Scholar 

  • Lin Y, Chen C, Chen L, Zeng S, Luo Q (2005) The analysis of electrode-recording horizon. Conf Proc IEEE Eng Med Biol Soc 7:7345–7348

    PubMed  Google Scholar 

  • Madhavan R, Chao ZC, Potter SM (2007) Plasticity of recurring spatiotemporal activity patterns in cortical networks. Phys Biol 4:181–193

    Article  PubMed  CAS  Google Scholar 

  • Maghribi M, Hamilton J, Polla D, Rose K, Wilson T, Krulevitch P (2002) Stretchable micro-electrode array [for retinal prosthesis]. In: Dittmar A, Beebe D (eds) Microtechnologies in Medicine and Biology, 2nd Annual International IEEE-EMB Special Topic Conference, Madison, p 80

    Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluska F, Arecchi T, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. PNAS 106:4048–4053

    Article  PubMed  CAS  Google Scholar 

  • Miljkovic-Licina M, Gauchat D, Galliot B (2004) Neuronal evolution: analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system. BioSystems 76:75–87

    Article  PubMed  CAS  Google Scholar 

  • Miller G (2009) On the origin of the nervous system. Science 325:24–26

    Article  PubMed  CAS  Google Scholar 

  • Offenhausser A, Sprossler C, Matsuzawa M, Knoll W (1997) Field-effect transistor array for monitoring electrical activity from mammalian neurons in culture. Biosens Bioelectron 12(8):819–826

    Article  PubMed  CAS  Google Scholar 

  • Pickard BG (1973) Action potential in higher plants. J Bot Rev 39:172–201

    Article  Google Scholar 

  • Pine J (2006) A history of MEA development. In: Baudry M, Taketani M (eds) Advances in network electrophysiology using multi-electrode arrays. Springer Press, New York, pp 3–23

    Chapter  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    Article  PubMed  CAS  Google Scholar 

  • Rodger DC, Li W, Fong AJ, Ameri H, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai Y (2006) Flexible microfabricated parylene multielectrode arrays for retinal stimulation and spinal cord field modulation. In: IEEE Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, Okinawa

    Google Scholar 

  • Sahin M, Haxhiu MA, Durand DM, Dreshaj IA (1997) Spiral nerve cuff electrode for recordings of respiratory output. J Appl Physiol 83:317–322

    PubMed  CAS  Google Scholar 

  • Schuettler M, Stieglitz T (2000) 5th Annual International Conference of the International Functional Electrical Stimulation Society. Aalborg, Denmark, p 18

    Google Scholar 

  • Schuettler M, Stiess S, King BV, Suaning GJ (2005) Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J Neural Eng 2:S121–S128

    Article  PubMed  CAS  Google Scholar 

  • Shew WL, Bellay T, Plenz D (2010) Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity. J Neurosci Meth 192:75–82

    Article  CAS  Google Scholar 

  • Stieglitz T (2001) Catalogue on available flexible, light-weighted microelectrodes. From www.ibmt.fraunhofer.de/gruppe_l/download/IBMT_Neuro%20Electrode%20Catalogue%20-%20July%202001.pdf

  • Stoppini L, Duport S, Correges P (1997) A new extracellular multirecording system for electrophysiological studies: Application to hippocampal organotypic cultures. J Neurosci Meth 72:23–33

    Article  CAS  Google Scholar 

  • Thomas CA, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66

    Article  PubMed  Google Scholar 

  • Torborg CL, Hansen HA, Feller MB (2004) High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci 8:72–78

    Article  PubMed  Google Scholar 

  • Tsay C, Lacour SP, Wagner S, Morrison B (2005) Architecture, fabrication, and properties of stretchable microelectrode arrays. Proc IEEE Sens, 1169–1172

    Google Scholar 

  • Volkov AG (2006) Plant electrophysiology: theory and methods. Springer, Berlin

    Book  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that l glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Mugnai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masi, E., Azzarello, E., Pandolfi, C., Pollastri, S., Mugnai, S., Mancuso, S. (2012). Multi Electrode Arrays (MEAs) and the Electrical Network of the Roots. In: Mancuso, S. (eds) Measuring Roots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22067-8_3

Download citation

Publish with us

Policies and ethics