Skip to main content

Sparse Tensor Approximation of Parametric Eigenvalue Problems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 83))

Abstract

We design and analyze algorithms for the efficient sensitivity computation of eigenpairs of parametric elliptic self-adjoint eigenvalue problems on high-dimensional parameter spaces. We quantify the analytic dependence of eigenpairs on the parameters. For the efficient approximate evaluation of parameter sensitivities of isolated eigenpairs on the entire parameter space we propose and analyze a sparse tensor spectral collocation method on an anisotropic sparse grid in the parameter domain. The stable numerical implementation of these methods is discussed and their error analysis is given. Applications to parametric elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. BABUšKA AND B. Q. GUO, Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order, SIAM J. Math. Anal., 19 (1988), pp. 172–203.

    Google Scholar 

  2. I. BABUšKA AND J. OSBORN, Eigenvalue problems, in Handb. Numer. Anal., Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787.

    Google Scholar 

  3. I. BABUšKA, R. TEMPONE, AND G. E. ZOURARIS, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Num. Anal., 42 (2002), pp. 800–825.

    Google Scholar 

  4. I. BABUšKA, F. NOBILE, AND R. TEMPONE, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Num. Anal., 45 (2007), pp. 1005–1034.

    Google Scholar 

  5. J. BäCK, F. NOBILE, L. TAMELLINI, AND R. TEMPONE, Stochastic Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, Tech. Report 09-33, ICES, 2009.

    Google Scholar 

  6. M. BIERI, A sparse composite collocation finite element method for elliptic sPDEs, Tech. Report 2009-08, Seminar for Applied Mathematics, ETH Zürich, 2009. SIAM Journ. Numer. Anal. (to appear 2011). Available via http://www.sam.math.ethz.ch/reports/2009/08.

  7. M. BIERI, Sparse tensor discretizations of elliptic PDEs with random input data, PhD thesis, ETH Zürich, 2009. Diss ETH No. 18598 Available via http://e-collection.ethbib.ethz.ch/.

  8. M. BIERI, R. ANDREEV, AND CH. SCHWAB, Sparse tensor discretization of elliptic spdes, SIAM J. Sci. Comput., 31 (2009), pp. 4281–4304.

    Google Scholar 

  9. M. BIERI AND CH. SCHWAB, Sparse high order FEM for elliptic sPDEs, Comp. Meth. Appl. Mech. Engrg., 198 (2009), pp. 1149–1170.

    Google Scholar 

  10. D. BRAESS, Finite Elemente, Springer, Berlin, 3rd ed., 2002.

    Google Scholar 

  11. HANS-JOACHIM BUNGARTZ AND MICHAEL GRIEBEL, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.

    Google Scholar 

  12. A. COHEN, R. DEVORE, AND CH. SCHWAB, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Tech. Report 2010-03, Seminar for Applied Mathematics, ETH Zürich, 2010.

    Google Scholar 

  13. ALBERT COHEN, RONALD DEVORE, AND CHRISTOPH SCHWAB, Convergence rates of best n-term galerkin approximations for a class of elliptic spdes, Found. Comput. Math., 10 (2010), pp. 615–646. 10.1007/s10208-010-9072-2.

    Google Scholar 

  14. W. DAHMEN, T. ROHWEDDER, R. SCHNEIDER, AND A. ZEISER, Adaptive eigenvalue computation: complexity estimates, Numer. Math., 110 (2008), pp. 277–312.

    Google Scholar 

  15. P. J. DAVIS, Interpolation and approximation, Introductions to higher mathematics, Blaisdell Publishing Company, 1963.

    Google Scholar 

  16. J. FOO, X. WAN, AND G.E. KARNIADAKIS, The multi-element probabilistic collocation method: analysis and simulation, Journal of Computational Physics, (2008), pp. 9572–9595.

    Google Scholar 

  17. P. FRAUENFELDER, CH. SCHWAB, AND R.-A. TODOR, Finite elements for elliptic problems with stochastic coefficients, Comp. Meth. Appl. Mech. Engrg., 194 (2005), pp. 205–228.

    Google Scholar 

  18. W. GAUTSCHI, Orthogonal polynomials. Computation and Approximation, Numer. Math. Sci. Comput., Oxford University Press Inc., 2004.

    Google Scholar 

  19. R. GEUS, The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems with application to the design of accelerator cavities, PhD thesis, ETH Zürich, 2002. Diss. Nr. 14734.

    Google Scholar 

  20. ROGER G. GHANEM AND POL D. SPANOS, Stochastic Finite Elements, a Spectral Approach, Dover Publications Inc., New York, revised ed., 2003.

    Google Scholar 

  21. CLAUDE JEFFREY GITTELSON, Adaptive Galerkin Methods for Parametric and Stochastic Operator Equations, PhD thesis, ETH Zürich, 2011. ETH Dissertation No. 19533.

    Google Scholar 

  22. CLAUDE JEFFREY GITTELSON, An adaptive stochastic Galerkin method, Tech. Report 2011-11, Seminar for Applied Mathematics, ETH Zürich, 2011.

    Google Scholar 

  23. CLAUDE JEFFREY GITTELSON, Adaptive stochastic Galerkin methods: Beyond the elliptic case, Tech. Report 2011-12, Seminar for Applied Mathematics, ETH Zürich, 2011.

    Google Scholar 

  24. CLAUDE JEFFREY GITTELSON, Stochastic Galerkin approximation of operator equations with infinite dimensional noise, Tech. Report 2011-10, Seminar for Applied Mathematics, ETH Zürich, 2011.

    Google Scholar 

  25. G. GOLUB AND C. VAN LOAN, Matrix computations, The Johns Hopkins University Press, London, 1996.

    Google Scholar 

  26. W. HACKBUSCH, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method, SIAM J. Numer. Anal., 16 (1979), pp. 201–215.

    Google Scholar 

  27. A. HENROT, Extremum Problems for Eigenvalues of Elliptic Operators, vol. 8 of Frontiers in Mathematics, Birkhäuser Basel, 2006.

    Google Scholar 

  28. M. HERVé, Analyticity in Infinite Dimensional Spaces, vol. 10 of De Gruyter studies in mathematics, Walter de Gruyter, 1989.

    Google Scholar 

  29. VIET-HA HOANG AND CHRISTOPH SCHWAB, Analytic regularity and gpc approximation for parametric and random 2nd order hyperbolic PDEs, Tech. Report 2010-19, Seminar for Applied Mathematics, ETH Zürich, 2010.

    Google Scholar 

  30. VIET-HA HOANG AND CHRISTOPH SCHWAB, Sparse tensor Galerkin discretization for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation, Tech. Report 2010-11, Seminar for Applied Mathematics, ETH Zürich, 2010.

    Google Scholar 

  31. L. HöRMANDER, An Introduction to Complex Analysis in Several Variables, The University Series in Higher Mathematics, D. van Nostrand Company, 1st ed., 1966.

    Google Scholar 

  32. L. HöRMANDER, An Introduction to Complex Analysis in Several Variables, North Holland Mathematical Library, North Holland, 3rd ed., 1990.

    Google Scholar 

  33. T. KATO, Perturbation theory for linear operators, vol. 132 of Grundlehren Math. Wiss., Springer Berlin, Heidelberg, New-York, 2 ed., 1976.

    Google Scholar 

  34. XIANG MA AND NICHOLAS ZABARAS, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228 (2009), pp. 3084–3113.

    Google Scholar 

  35. F. NOBILE, R. TEMPONE, AND C.G. WEBSTER, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Num. Anal., 46 (2008), pp. 2411–2442.

    Google Scholar 

  36. F. NOBILE, R. TEMPONE, AND C.G. WEBSTER, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Num. Anal., 46 (2008), pp. 2309–2345.

    Google Scholar 

  37. M. REED AND B. SIMON, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972.

    Google Scholar 

  38. M. REED AND B. SIMON, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

    Google Scholar 

  39. F. RELLICH, Perturbation theory of eigenvalue problems, Notes on mathematics and its applications, Gordon and Breach, New York, London, Paris, 1969.

    Google Scholar 

  40. CH. SCHWAB AND R.-A. TODOR, Karhunen-Loève approximation of random fields by generalized fast multipole methods, Journal of Computational Physics, 217 (2006), pp. 100–122.

    Google Scholar 

  41. S.A. SMOLYAK, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl., 4 (1963), pp. 240–243.

    Google Scholar 

  42. D. C. SORENSEN, Numerical methods for large eigenvalue problems, Acta Numer., 11 (2002), pp. 519–584.

    Google Scholar 

  43. R.A. TODOR, Sparse Perturbation algorithms for elliptic PDE’s with stochastic data, PhD thesis, ETH Zürich, 2005. Diss. Nr. 16192.

    Google Scholar 

  44. R.-A. TODOR AND CH. SCHWAB, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Num. Anal., 27 (2007), pp. 232–261.

    Google Scholar 

  45. G. W. WASILKOWSKI AND H. WOźNIAKOWSKI, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity, 11 (1995), pp. 1–56.

    Google Scholar 

  46. DONGBIN XIU, Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys., 5 (2009), pp. 242–272.

    Google Scholar 

  47. DONGBIN XIU AND JAN S. HESTHAVEN, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139 (electronic).

    Google Scholar 

  48. DONGBIN XIU AND GEORGE EM KARNIADAKIS, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4927–4948.

    Google Scholar 

  49. DONGBIN XIU AND GEORGE EM KARNIADAKIS, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644 (electronic).

    Google Scholar 

  50. DONGBIN XIU AND DANIEL M. TARTAKOVSKY, Numerical methods for differential equations in random domains, SIAM J. Sci. Comput., 28 (2006), pp. 1167–1185 (electronic).

    Google Scholar 

Download references

Acknowledgements

Supported by SNF grant PDFMP2-127034/1 and by ERC AdG grant STAHDPDE 247277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreev, R., Schwab, C. (2012). Sparse Tensor Approximation of Parametric Eigenvalue Problems. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22061-6_7

Download citation

Publish with us

Policies and ethics