Advertisement

Architecting Climate Change Data Infrastructure for Nevada

  • Michael J. McMahonJr.
  • Sergiu M. Dascalu
  • Frederick C. HarrisJr.
  • Scotty Strachan
  • Franco Biondi
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 83)

Abstract

The NSF EPSCoR-funded Nevada Climate Change Project seeks to create a central, reusable, extensible infrastructure that can be used to collect geospatial climate data and information. Housing climate data for Nevada and its surrounding regions during the initial construction phases, the newly created system (with its central component: the Nevada Climate Change Portal) will ultimately be capable of storing any kind of geospatial data for multiple types of research, education and outreach activities. In order to meet the varied needs of the climate researchers, educators, students, and policy makers involved in the project, it was necessary to research and implement a new system architecture. The novelty of this architecture is that it addresses, in an extensible and robust manner, the end-to-end needs of all project stakeholders, implementing multiple sub-levels of architectural design that incorporate data acquisition from sensor networks, data storage using high-performance geospatially-enabled databases, asset tracking and management to improve data validation and verification, metadata collection and management, data curation, and advanced web-based data management and retrieval. The paper describes the proposed system architecture, discusses the major design challenges encountered, addresses some implementation points, and highlights the capabilities of the Nevada Climate Change Portal.

Keywords

Climate change infrastructure system architecture web services sensor network climate research education public policy 

References

  1. 1.
    Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Professional, New york (2002)Google Scholar
  2. 2.
    Microsoft Patterns & Practices Team: Microsoft Application Architecture Guide, 2nd edn. Microsoft Press, Redmond (2010)Google Scholar
  3. 3.
    Western Regional Climate Center (2011), http://www.wrcc.dri.edu
  4. 4.
    National Oceanic and Atmospheric Administration (2011), http://www.noaa.gov
  5. 5.
    National Climatic Data Center (2011), http://www.ncdc.noaa.gov
  6. 6.
    Consortium of Universities for the Advancement of Hydrologic Science, Inc. (2011), http://www.cuahsi.org
  7. 7.
    New Mexico Resource Geographic Information System Program (2011), http://rgis.unm.edu
  8. 8.
    Open Geospatial Consortium: OGC Web Map Service Interface, Version 1.3.0 (2004), http://portal.opengeospatial.org/files/?artifact_id=4756
  9. 9.
    Open Geospatial Consortium: Web Feature Service Implementation Specification, Version 1.1.0 (2005), http://portal.opengeospatial.org/files/?artifact_id=8339
  10. 10.
    Open Geospatial Consortium: Web Coverage Service (WCS) Implementation Standard, Version 1.1.2 (2008), http://portal.opengeospatial.org/files/?artifact_id=27297
  11. 11.
    Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In: Fifth Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), pp. 109–120. IEEE Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus: Making service-oriented architecture real. IBM Systems Journal 44(4), 781–797 (2005)CrossRefGoogle Scholar
  13. 13.
    Lu, X.: An Investigation on Service-Oriented Architecture for Constructing Distributed Web GIS Application. In: 2005 IEEE International Conference on Services Computing, vol. 1, pp. 191–197. IEEE Press, New York (2005)Google Scholar
  14. 14.
    Tsonis, A.A., Roebber, P.J.: The Architecture of the Climate Network. In: Physica A: Statistical and Theoretical Physics, vol. 333, pp. 497–504. Elsevier, Maryland Heights (2004)Google Scholar
  15. 15.
    Rew, R., Davis, G.: NetCDF: An Interface for Scientific Data Access. In: IEEE Computer Graphics and Applications, vol. 10(4), pp. 76–82. IEEE Press, New York (1990)Google Scholar
  16. 16.
    Delaney, K., Randal, P., Tripp, K., Cunningham, C., Machanic, A.: Microsoft SQL Server 2008 Internals. Microsoft Press, Redmond (2009)Google Scholar
  17. 17.
    Ben-Gan, I., Sarka, D., Wolter, R., Low, G., Katibah, E., Kunen, I.: Inside Microsoft SQL Server 2008: T-SQL Programming. Microsoft Press, Redmond (2009)Google Scholar
  18. 18.
    Aitchison, A.: Beginning Spatial with SQL Server 2008. Apress, New York (2009)Google Scholar
  19. 19.
    Piasecki, M., Ames, D., Goodall, J., Hooper, R., Horsburgh, J., Maidment, D., Tarboton, D., Zaslavsky, I.: Development of an Information System for the Hydrologic Community. In: 9th International Conference on Hydroinformatics, HIC 2010 (2010)Google Scholar
  20. 20.
    Ames, D.P., Horsburgh, J., Goodall, J., Whiteaker, T., Tarboton, D., Maidment, D.: Introducing the Open Source CUAHSI Hydrologic Information System Desktop Application (HIS Desktop). In: Anderssen, R.S., Braddock, R.D., Newham, L.T.H. (eds.) 18th World IMACS Congress and MODSIM 2009 International Congress on Modelling and Simulation Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, pp. 4353–4359 (July 2009)Google Scholar
  21. 21.
    Tarboton, D.G., Horsburgh, J.S., Maidment, D.R.: CUAHSI Community Observations Data Model (ODM), Version 1.1, Design Specifications (2008), http://his.cuahsi.org/documents/ODM1.1DesignSpecifications.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael J. McMahonJr.
    • 1
  • Sergiu M. Dascalu
    • 1
  • Frederick C. HarrisJr.
    • 1
  • Scotty Strachan
    • 2
  • Franco Biondi
    • 2
  1. 1.Department of Computer Science & EngineeringUniversity of NevadaRenoUSA
  2. 2.Department of Geography, DendroLab, MS 154University of NevadaRenoUSA

Personalised recommendations