Advertisement

Pairwise-Interaction Games

  • Martin Dyer
  • Velumailum Mohanaraj
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We study the complexity of computing Nash equilibria in games where players arranged as the vertices of a graph play a symmetric 2-player game against their neighbours. We call this a pairwise-interaction game. We analyse this game for n players with a fixed number of actions and show that (1) a mixed Nash equilibrium can be computed in constant time for any game, (2) a pure Nash equilibrium can be computed through Nash dynamics in polynomial time for games with a symmetrisable payoff matrix, (3) determining whether a pure Nash equilibrium exists for zero-sum games is NP-complete, and (4) counting pure Nash equilibria is #P-complete even for 2-strategy games. In proving (3), we define a new defective graph colouring problem called Nash colouring, which is of independent interest, and prove that its decision version is NP-complete. Finally, we show that pairwise-interaction games form a proper subclass of the usual graphical games.

Keywords

Nash equilibrium graphical game computational complexity pairwise interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Roglin, H., Vocking, B.: On the impact of combinatorial structure on congestion games. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 613–622 (2006)Google Scholar
  2. 2.
    Àlvarez, C., Gabarró, J., Serna, M.: Pure Nash equilibria in games with a large number of actions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 95–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Berninghaus, S.K., Haller, H.: Pairwise interaction on random graphs, Tech. Report 06–16, Sonderforschungsbereich 504, University of Mannheim (February 2007)Google Scholar
  4. 4.
    Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium in cut, party affiliation, and satisfiability games. In: Proceedings of the 11th ACM Conference on Electronic Commerce (EC 2010), pp. 73–82 (2010)Google Scholar
  5. 5.
    Brandt, F., Fischer, F., Holzer, M.: Equilibria of graphical games with symmetries. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 198–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash equilibrium. Journal of Computer and System Sciences 75, 163–177 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272 (2006)Google Scholar
  8. 8.
    Cheng, S., Reeves, D.M., Vorobeychik, Y., Wellman, M.P.: Notes on the equilibria in symmetric games. In: Proceedings of the 6th International Workshop on Game Theoretic and Decision Theoretic Agents (GTDT 2004), pp. 71–78 (2004)Google Scholar
  9. 9.
    Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games and Economic Behavior 63, 621–641 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cowen, L.J., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Graph Theory 24, 205–219 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. Commun. ACM 52, 89–97 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 604–612 (2004)Google Scholar
  13. 13.
    Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and choice on the complexity of finding pure Nash equilibria. Information Processing Letters 99, 239–245 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Economic Behavior 1, 80–93 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Halldórsson, M.M., Lau, H.C.: Low-degree graph partitioning via local search with applications to constraint satisfaction, max cut, and coloring. Journal of Graph Algorithms and Applications 1, 1–13 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kaplansky, I.: A contribution to von Neumann’s theory of games. The Annals of Mathematics 46, 474–479 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory, Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001), pp. 253–260 (2001)Google Scholar
  19. 19.
    Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. Journal of Algorithms 4, 35–44 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nash, J.: Non-cooperative games. The Annals of Mathematics 54, 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player games. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 82–91 (2005)Google Scholar
  24. 24.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences 273, 51–55 (2006)CrossRefGoogle Scholar
  25. 25.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20, 56–87 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Dyer
    • 1
  • Velumailum Mohanaraj
    • 1
  1. 1.School of ComputingUniversity of LeedsLeedsUnited Kingdom

Personalised recommendations