Abstract
Quantum simulated annealing is analogous to a population of agents cooperating to optimize a shared cost function defined as the total energy between them. A hybridization of quantum annealing with mainstream evolutionary techniques is introduced to obtain an effective solver for the graph coloring problem. The state of the art is advanced by the description of a highly scalable distributed version of the algorithm. Most practical simulated annealing algorithms require the reduction of a control parameter over time to achieve convergence. The algorithm presented is able to keep all its parameters fixed at their initial value throughout the annealing schedule, and still achieve convergence to a global optimum in reasonable time. Competitive results are obtained on challenging problems from the standard DIMACS benchmarks. Furthermore, for some of the graphs, the distributed hybrid quantum annealing algorithm finds better results than those of any known algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Physical Review EÂ 58, 5355 (1998)
Das, A., Chakrabarti, B.K.: Quantum Annealing and quantum analog computation. Rev. Mod. Phys. 80, 1061 (2008)
Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling salesman problem. Phys. Rev. E 70, 057701 (2004)
Battaglia, D.A., Santoro, G.E., Tosatti, E.: Optimization by quantum annealing: Lessons from hard satisfiability problems. Phys. Rev. 71, 066707 (2005)
Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)
Malaguti, E., Monaaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing 20(2), 302–316 (2008)
Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)
Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph colouring. Computers and Operations Research 37(1), 1822–1832 (2010)
Morita, S., Nishimori, H.: Mathematical foundations of quantum annealing. Journal of Mathematical Physics 49, 12521 (2008)
Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discrete Optimization (2011), doi:10.1016/j.disopt.2010.12.001
Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)
Morgenstern, C.: Distributed coloration neighborhood search. In: [12], pp. 335–358
Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature schedule. SIAM Journal on Optimization 9, 779–802 (1999)
Greene, J.A., Supowit, K.J.: Simulated annealing without rejected moves. IEEE Trans.Comput.-Aided Design CAD 5(1), 221–228 (1986)
Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Information Processing Letters 82(3), 159–164 (2002)
Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Titiloye, O., Crispin, A. (2011). Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-22000-5_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21999-3
Online ISBN: 978-3-642-22000-5
eBook Packages: Computer ScienceComputer Science (R0)