Skip to main content

Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6682)

Abstract

Quantum simulated annealing is analogous to a population of agents cooperating to optimize a shared cost function defined as the total energy between them. A hybridization of quantum annealing with mainstream evolutionary techniques is introduced to obtain an effective solver for the graph coloring problem. The state of the art is advanced by the description of a highly scalable distributed version of the algorithm. Most practical simulated annealing algorithms require the reduction of a control parameter over time to achieve convergence. The algorithm presented is able to keep all its parameters fixed at their initial value throughout the annealing schedule, and still achieve convergence to a global optimum in reasonable time. Competitive results are obtained on challenging problems from the standard DIMACS benchmarks. Furthermore, for some of the graphs, the distributed hybrid quantum annealing algorithm finds better results than those of any known algorithm.

Keywords

  • Multi-agent
  • Optimization
  • Quantum Annealing
  • Simulated Annealing
  • Distributed Algorithms
  • Graph Coloring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Physical Review E 58, 5355 (1998)

    CrossRef  Google Scholar 

  3. Das, A., Chakrabarti, B.K.: Quantum Annealing and quantum analog computation. Rev. Mod. Phys. 80, 1061 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling salesman problem. Phys. Rev. E 70, 057701 (2004)

    CrossRef  Google Scholar 

  5. Battaglia, D.A., Santoro, G.E., Tosatti, E.: Optimization by quantum annealing: Lessons from hard satisfiability problems. Phys. Rev. 71, 066707 (2005)

    Google Scholar 

  6. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Malaguti, E., Monaaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing 20(2), 302–316 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph colouring. Computers and Operations Research 37(1), 1822–1832 (2010)

    CrossRef  MATH  Google Scholar 

  10. Morita, S., Nishimori, H.: Mathematical foundations of quantum annealing. Journal of Mathematical Physics 49, 12521 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discrete Optimization (2011), doi:10.1016/j.disopt.2010.12.001

    Google Scholar 

  12. Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  13. Morgenstern, C.: Distributed coloration neighborhood search. In: [12], pp. 335–358

    Google Scholar 

  14. Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature schedule. SIAM Journal on Optimization 9, 779–802 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Greene, J.A., Supowit, K.J.: Simulated annealing without rejected moves. IEEE Trans.Comput.-Aided Design CAD 5(1), 221–228 (1986)

    CrossRef  Google Scholar 

  16. Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Information Processing Letters 82(3), 159–164 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Titiloye, O., Crispin, A. (2011). Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)