SimZombie: A Case-Study in Agent-Based Simulation Construction

  • Matthew Crossley
  • Martyn Amos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6682)

Abstract

In this paper we describe a general method for the conversion of an equation-based model to an agent-based simulation. We illustrate the process by converting a well-known recent case-study in epidemiology (zombie infection), and show how we may obtain qualitatively similar results, whilst gaining access to the many benefits of an agent-based implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aikman, D., Scaife, A.: Modelling Plant Growth Under Varying Environment Conditions in a Uniform Canopy. Annals of Botany 72(5), 485 (1993)CrossRefGoogle Scholar
  2. 2.
    Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Mathematical Biosciences 124(1), 83–105 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Axtell, R.: Why agents?: on the varied motivations for agent computing in the social sciences. Workshop on Agent Simulation: Applications, Models and Tools (2000)Google Scholar
  4. 4.
    Baranyi, J., Roberts, T., McClure, P.: A non-autonomous differential equation to model bacterial growth. Food Microbiology 10(1), 43–59 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Billari, F., Fent, T., Prskawetz, A., Scheffran, J.: Agent-Based Computational Modelling: Applications in Demography, Social, Economic and Environmental Sciences (Contributions to Economics). Physica-Verlag (2006)Google Scholar
  6. 6.
    Bolch, G.: Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley-Blackwell (2006)Google Scholar
  7. 7.
    Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 3), 7280–7287 (2002), http://www.pnas.org/content/99/suppl.3/7280.short CrossRefGoogle Scholar
  8. 8.
    Brajnik, G., Lines, M.: Qualitative modeling and simulation of socio-economic phenomena. Journal of Artificial Societies and Social Simulation 1(1) (1998), http://www.soc.surrey.ac.uk/JASSS/1/1/2.html
  9. 9.
    Brauer, F., Van den Driessche, P.: Models for transmission of disease with immigration of infectives. Mathematical Biosciences 171(2), 143–154 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Butcher, J., Corporation, E.: Numerical methods for ordinary differential equations. Wiley Online Library, Chichester (2008)CrossRefGoogle Scholar
  11. 11.
    Draper, N., Smith, H., Pownell, E.: Applied regression analysis, vol. 706. Wiley, New York (1998)Google Scholar
  12. 12.
    Epstein, J.: Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 3), 7243 (2002)CrossRefGoogle Scholar
  13. 13.
    Epstein, J.M.: Why model? Journal of Artificial Societies and Social Simulation 11(4), 12 (2008), http://jasss.soc.surrey.ac.uk/11/4/12.html
  14. 14.
    Gagne, P.: The Zombies That Ate Pittsburgh: The Films of George A. Romero. Dodd, Mead (1987)Google Scholar
  15. 15.
    Gilbert, G.: Agent-based models. Sage Publications, Inc., Thousand Oaks (2008)CrossRefGoogle Scholar
  16. 16.
    Gilbert, N., Terna, P.: How to build and use agent-based models in social science. Mind & Society 1(1), 57–72 (2000)CrossRefGoogle Scholar
  17. 17.
    Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecological Modelling 115(2), 129–148 (1999)CrossRefGoogle Scholar
  18. 18.
    Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4), 9 (2009), http://jasss.soc.surrey.ac.uk/12/4/9.html Google Scholar
  19. 19.
    Huston, M., DeAngelis, D., Post, W.: New computer models unify ecological theory. BioScience 38(10), 682–691 (1988)CrossRefGoogle Scholar
  20. 20.
    Klügl, F., Bazzan, A.L.C.: Route decision behaviour in a commuting scenario: Simple heuristics adaptation and effect of traffic forecast. Journal of Artificial Societies and Social Simulation 7(1) (2004), http://jasss.soc.surrey.ac.uk/7/1/1.html
  21. 21.
    Law, A., Kelton, W., Kelton, W.: Simulation modeling and analysis, vol. 2. McGraw-Hill, New York (1991)MATHGoogle Scholar
  22. 22.
    Macy, M., Willer, R.: From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 143–167 (2002)Google Scholar
  23. 23.
    Munz, P., Hudea, I., Imad, J., Smith, R.: When zombies attack!: Mathematical modelling of an outbreak of zombie infection. In: Tchuenche, J.M., Chiyaka, C. (eds.) Infectious Disease Modelling Research Progress, pp. 133–150. Nova Science Publishers, Hauppauge (2009)Google Scholar
  24. 24.
    Musse, S., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. In: Computer Animation and Simulation, Citeseer, vol. 97, pp. 39–51 (1997)Google Scholar
  25. 25.
    Osborne, M., Rubinstein, A.: A course in game theory. The MIT press, Cambridge (1994)MATHGoogle Scholar
  26. 26.
    Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, M.: Formal agent-based modelling of intracellular chemical interactions. Biosystems 85(1), 37–45 (2006)CrossRefGoogle Scholar
  27. 27.
    Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54(5), 998–1014 (2008)CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34. ACM, New York (1987)Google Scholar
  29. 29.
    Sidrauski, M.: Rational choice and patterns of growth in a monetary economy. The American Economic Review 57(2), 534–544 (1967)Google Scholar
  30. 30.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 205–214. ACM, New York (1987)Google Scholar
  31. 31.
    Van Dyke Parunak, H., Savit, R., Riolo, R.: Agent-based modeling vs. equation-based modeling: A case study and users guide. Multi-Agent Systems and Agent-Based Simulation, 10–25 (1998)Google Scholar
  32. 32.
    Wilson, W.: Resolving discrepancies between deterministic population models and individual-based simulations. American Naturalist 151(2), 116–134 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthew Crossley
    • 1
  • Martyn Amos
    • 1
  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations