Advertisement

Universal Relations for Fermions with Large Scattering Length

  • Eric BraatenEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 836)

Abstract

Particles with short-range interactions that produce a large scattering length have universal properties that depend only on the scattering length [1]. A system consisting of such particles is strongly interacting in the sense that there are effects of the interactions that must be treated nonperturbatively. These strong interactions give rise to strong correlations among the particless. Many theoretical methods, even if they are nonperturbative, are inadequate for dealing with such strong correlations. However, such a system is also governed by universal relations that follow from the short-distance and short-time dynamics associated with the large scattering length. These universal relations provide powerful constraints on the behavior of the system. They hold for any state of the system: few-body or many-body, ground state or nonzero temperature, homogeneous or in a trapping potential, normal state or superfluid, balanced in the two spin states or imbalanced. They connect various properties of the system, ranging from thermodynamic variables to large-momentum and high-frequency tails of correlation functions.

Keywords

Momentum Distribution Operator Product Expansion Virial Theorem Feshbach Resonance Universal Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by a joint grant from the Army Research Office and the Air Force Office of Scientific Research. I would like to acknowledge useful comments by Lucas Platter, Shina Tan, Edward Taylor, Felix Werner, and Shizhong Zhang.

References

  1. 1.
    Braaten, E., Hammer, H.W.: Phys. Rept. 428, 259 (2006). arXiv:cond-mat/0410417Google Scholar
  2. 2.
    Tan, S.: Ann. Phys. 323, 2952 (2008). arXiv:cond-mat/0505200Google Scholar
  3. 3.
    Tan, S.: Ann. Phys. 323, 2971 (2008). arXiv:cond-mat/0508320Google Scholar
  4. 4.
    Tan, S.: Ann. Phys. 323, 2987 (2008). arXiv:0803.0841Google Scholar
  5. 5.
    Braaten, E., Platter, L.: Phys. Rev. Lett. 100, 205301 (2008). arXiv:0803.1125Google Scholar
  6. 6.
    Thomas, J.E., Kinast, J., Turlapov, A.: Rev. Lett. 95, 120402 (2005). arXiv:cond-mat/0503620Google Scholar
  7. 7.
    Blume, D., Daily, K.M.: Phys. Rev. A 80, 053626 (2009). arXiv:0909.2701Google Scholar
  8. 8.
    Chang, S.Y., Pandharipande, V.R., Carlson, J., Schmidt, K.E.: Phys. Rev. A 70, 043602 (2004). arXiv:physics/0404115Google Scholar
  9. 9.
    Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S.: Phys. Rev. Lett. 93, 200404 (2004). arXiv:cond-mat/0406113Google Scholar
  10. 10.
    Lobo, C., Carusotto, I., Giorgini, S., Recati, A., Stringari, S.: Phys. Rev. Lett. 97, 100405 (2006). arXiv:cond-mat/0604282Google Scholar
  11. 11.
    Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Phys. Rev. Lett. 93, 090404 (2004). arXiv:cond-mat/0309010Google Scholar
  12. 12.
    Haussmann, R., Punk, M., Zwerger, W.: Phys. Rev. A 80, 063612 (2009). arXiv:0904.1333Google Scholar
  13. 13.
    Yu, Z., Bruun, G.M., Baym, G.: Phys. Rev. A 80, 023615 (2009). arXiv:0905.1836Google Scholar
  14. 14.
    Palestini, F., Perali, A., Pieri, P., Strinati, G.C.: Phys. Rev. A 82, 021605(R) (2010). arXiv:1005.1158Google Scholar
  15. 15.
    Prokof’ev, N., Svistunov, B.: Phys. Rev. B 77, 020408(R) (2008). arXiv:0707.4259Google Scholar
  16. 16.
    Punk, M., Dumitrescu, P.T., Zwerger, W.: Phys. Rev. A 80, 053605 (2009). arXiv:0908.1343Google Scholar
  17. 17.
    Yu, Z., Baym, G.: Phys. Rev. A 73, 063601 (2006). arXiv:cond-mat/0510675Google Scholar
  18. 18.
    Zhang, S., Leggett, A.J.: Phys. Rev. A 77, 033614 (2008)Google Scholar
  19. 19.
    Punk, M., Zwerger, W.: Phys. Rev. Lett. 99, 170404 (2007). arXiv:0707.0792Google Scholar
  20. 20.
    Baym, G., Pethick, C.J., Yu, Z., Zwierlein, M.W.: Phys. Rev. Lett. 99, 190407 (2007). arXiv:0707.0859Google Scholar
  21. 21.
    Zwierlein, M.W., Hadzibabic, Z,, Gupta, S., Ketterle, W.: Phys. Rev. Lett. 91, 250404 (2003). arXiv:cond-mat/0306627Google Scholar
  22. 22.
    Braaten, E., Kang, D., Platter, L.: Phys. Rev. Lett. 104, 223004 (2010). arXiv:1001.4518Google Scholar
  23. 23.
    Schneider, W., Shenoy, V.B., Randeria, M.: Theory of radio frequency spectroscopy of polarized Fermi gases. arXiv:0903.3006Google Scholar
  24. 24.
    Schneider, W., Randeria, M.: Phys. Rev. A 81, 021601(R) (2010). arXiv:0910.2693Google Scholar
  25. 25.
    Pieri, P., Perali, A., Strinati, G.C.: Nat. Phys. 5, 736 (2009). arXiv:0811.0770Google Scholar
  26. 26.
    Werner, F.: Phys. Rev. A 78, 025601 (2008). arXiv:0803.3277Google Scholar
  27. 27.
    Werner, F., Tarruell, L., Castin, Y.: Phys. J. B 68, 401 (2009). arXiv:0807.0078Google Scholar
  28. 28.
    Zhang, S., Leggett, A.J.: Phys. Rev. A 79, 023601 (2009). arXiv:0809.1892Google Scholar
  29. 29.
    Braaten, E., Kang, D., Platter, L.: Phys. Rev. A 78, 053606 (2008). arXiv:0806.2277Google Scholar
  30. 30.
    Combescot, R., Giorgini, S., Stringari, S.: Europhys. Lett. 75, 695 (2006). arXiv:cond-mat/0512048Google Scholar
  31. 31.
    Hu, H., Liu, X.-J., Drummond, P.D.: Europhys. Lett. 91, 20005 (2010). arXiv:1003.3511Google Scholar
  32. 32.
    Son, D.T., Thompson, E.G.: Phys. Rev. A 81, 063634 (2010). arXiv:1002.0922Google Scholar
  33. 33.
    Taylor, E., Randeria, M.: Phys. Rev. A 81, 053610 (2010). arXiv:1002.0869Google Scholar
  34. 34.
    Enss, T., Haussmann, R., Zwerger, W.: Ann. Phys. 326, 770 (2011). arXiv:1008.0007Google Scholar
  35. 35.
    Partridge, G.B., Strecker, K.E., Kamar, R.I., Jack, M.W., Hulet, R.G.: Phys. Rev. Lett. 95, 020404 (2005). arXiv:cond-mat/0505353Google Scholar
  36. 36.
    Kuhnle, E., Veeravalli, G., Dyke, P., Vale, C.J.: Phys. Rev. Lett. 101, 250403 (2008). arXiv:0809.2145Google Scholar
  37. 37.
    Hu, H., Kuhnle, E,D., Liu, X.-J., Dyke, P., Mark, M., Drummond, P.D., Hannaford, P., Vale, C.J.: Phys. Rev. Lett. 105, 070402 (2010). arXiv:1001.3200Google Scholar
  38. 38.
    Stewart, J.T., Gaebler, J.P., Drake, T.E., Jin, D.S.: Phys. Rev. Lett. 104, 235301 (2010). arXiv:1002.1987Google Scholar
  39. 39.
    Navon, N., Nascimbène, S., Chevy, F., Salomon, C.: Science 328, 729 (2010). arXiv:1004.1465Google Scholar
  40. 40.
    Werner, F., Castin ,Y.: Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions. arXiv:1001.0774Google Scholar
  41. 41.
    Tan, S.: S-wave contact interaction problem: a simple description. arXiv:cond-mat/0505615Google Scholar
  42. 42.
    Combescot, R., Alzetto, F., Leyronas, X.: Phys. Rev. A 79, 053640 (2009). arXiv:0901.4303Google Scholar
  43. 43.
    Kadanoff, L.P.: Phys. Rev. Lett. 23 1430 (1969)Google Scholar
  44. 44.
    Wilson, K.G., Zimmermann, W.: Comm. Math. Phys. 24, 87 (1972)Google Scholar
  45. 45.
    Onsager, L.: Phys. Rev. 65, 117 (1944)Google Scholar
  46. 46.
    Son, D.T., Wingate, M.: Ann. Phys. 321, 197 (2006). arXiv:cond-mat/0509786Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations