Abstract
We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment schemes which we show how to construct in the given setting. We then show that the interactive generation of random coins at the beginning or during outer protocols allows for quantum-secure realizations of classical schemes, again without any set-up assumptions. As example applications we discuss quantum zero-knowledge proofs of knowledge and quantum-secure two-party function evaluation. Both applications assume only fully simulatable coin-flipping and mixed commitments. Since our framework allows to construct fully simulatable coin-flipping from mixed commitments, this in particular shows that mixed commitments are complete for quantum-secure two-party function evaluation. This seems to be the first completeness result for quantum-secure two-party function evaluation from a generic assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)
Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: A Report on CRYPTO 1981, pp. 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82-04 (1981)
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Compututer and System Sciences 37(2), 156–189 (1988)
Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)
Damgård, I.B., Fehr, S., Salvail, L.: Zero-knowledge proofs and string commitments withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 254–272. Springer, Heidelberg (2004)
Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)
Damgård, I.B., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)
Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)
Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th Annual ACM Symposium on Theory of Computing (STOC), pp. 291–304 (1985)
van de Graaf, J.: Towards a formal definition of security for quantum protocols. PhD thesis, Université de Montréal (Canada) (1997)
Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quantum world (2011), Extended abstract available at qip2011.quantumlah.org/scientificprogramme/abstract/183.pdf
Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 20–31 (1988)
Lunemann, C.: Cryptographic Protocols under Quantum Attacks. PhD thesis, Aarhus University (Denmark) (November 2010), arXiv:1102.0885 [quant-ph]
Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applications (2011), Full version available at eprint.iacr.org/2011/065
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008), Full version available at eprint.iacr.org/2007/348.pdf
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 84–93 (2005)
Smith, A.: Personal communication (2009)
Watrous, J.: Zero-knowledge against quantum attacks. SIAM Journal on Computing 39(1), 25–58 (2009); Preliminary version in 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 296–305 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lunemann, C., Nielsen, J.B. (2011). Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-21969-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21968-9
Online ISBN: 978-3-642-21969-6
eBook Packages: Computer ScienceComputer Science (R0)