Skip to main content

Lungs as a Natural Porous Media: Architecture, Airflow Characteristics and Transport of Suspended Particles

  • Chapter
  • First Online:
Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 13))

Abstract

Lungs are natural porous structures that are unique, challenging, and high-value media to study. There are multiple drivers to obtain an improved understanding of their architecture and function: to increase high-value information and insights that can be applied in healthcare, to devise control strategies that will limit some hazards effects, and to expand boundaries of what is known that can be applied to produce new (improved) materials. This chapter covers three major topics: shape and structure of lungs, airflow characteristics and the interaction of suspension of particles with the respiratory tract. It is focused on the biological and physical mechanisms involved, in the hope that this will allow an overview of the science related to the respiratory tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The idea of available energy dates back to Sadi Carnot (1796–1832) for the specialized case of heat engines. The concept, further developed theoretically by scientists like H. Helmholtz and J. W. Gibbs, has been applied to many kinds of processes, under several different names (available work, information, etc.). Only in second half of last century, a standard definition was formulated and the designation exergy adopted. Exergy is an extensive non-conservative quantity which synthesizes both first and second law of thermodynamics. Exergy is a measure of the ability to do work of a great variety of streams (mass, fluid, heat) that flow through a system [17]. The exergy concept makes possible to compare on a common basis inputs or outputs that are different from the physical point of view, and by accounting for all the exergy streams it makes possible to determine the extent to which the system destroy exergy.

  2. 2.

    Wechsatol et al. [27] studied the effect of junction losses on the optimal geometry of bifurcation. They concluded that in case of laminar flow, the junction losses have sizable effects on the optimal diameter ratio at each node of bifurcation only when the dimensionless parameter called svelteness, defined by the ratio between the external and internal length scales, is lower than the square root of 10.

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1999)

    Google Scholar 

  2. Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Google Scholar 

  3. Miguel, A.F.: Computational analysis of the role of permeability and inertia on fluid flow through porous media. In: Delgado, J.M.P.Q. (ed.) Current Trends in Chemical Engineering, pp. 1–19. Studium Press LLC, Houston (2010)

    Google Scholar 

  4. Weibel, E.R.: Morphometry of the Human Lung. Academic, New York (1963)

    Google Scholar 

  5. Gattuso, P., Reddy, V.B., David, O., Spitz, D.J.: Differential Diagnosis in Surgical Pathology. WB Saunders, New York (2009)

    Google Scholar 

  6. Horsfield, K.: Diameters, generations and orders of branches in the bronchial tree. J. Appl. Physiol. 68, 457–461 (1990)

    CAS  Google Scholar 

  7. Bejan, A.: Shape and Structure—from Engineering to Nature. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Miguel, A.F.: Natural flow systems: acquiring their constructal morphology. Int. J. Des. Nat. Ecodyn. 5, 230–241 (2010)

    Article  Google Scholar 

  9. Hess, W.R.: Das prinzip des kleinsten kraftverbrauchs im dienste hämodynamischer forschung. Arch. Anat. Physiol. 2, 1–62 (1914)

    Article  Google Scholar 

  10. Murray, C.D.: The physiological principle of minimum work. Proc. Natl. Acad. Sci. U. S. A. 12, 207–214 (1926)

    Article  CAS  Google Scholar 

  11. Rashevsky, N.: The principle of adequate design. In: Rosen, R. (ed.) Foundations of Mathematical Biology, pp. 143–175. Academic, New York (1973)

    Google Scholar 

  12. Horsfield, K., Cumming, G.: Angles of branching and diameters of branches in the human bronchial tree. Bull. Math. Biophys. 29, 245–259 (1967)

    Article  CAS  Google Scholar 

  13. Zamir, M.: The role of shear forces in arterial branching. J. Gen. Physiol. 67, 213–222 (1975)

    Article  Google Scholar 

  14. Horsfield, K., Dart, G., Olson, D.E., Filley, G.F., Cumming, G.: Models of the human bronchial tree. J. Appl. Physiol. 31, 202–217 (1971)

    Google Scholar 

  15. Koblinger, L., Hofmann, W.: Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys. Med. Biol. 30, 541–556 (1985)

    Article  CAS  Google Scholar 

  16. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    Google Scholar 

  17. Dincer, I., Rosen, M.: Exergy: Energy, Environment and Sustainable Development. Elsevier, Burlington (2007)

    Google Scholar 

  18. Bejan, A., Lorente, S.: Design with Constructal Theory. Wiley, New Jersey (2008)

    Book  Google Scholar 

  19. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)

    Article  CAS  Google Scholar 

  20. Bejan, A.: Street network theory of organization in nature. J. Adv. Transp. 30, 85–107 (1996)

    Article  Google Scholar 

  21. Bejan, A., Lorente, S.: Constructal theory of generation of configuration in nature and engineering. J. Appl. Phy. 100, 2006 (2006)

    Google Scholar 

  22. Miguel, A.F., Bejan, A.: The principle that generates dissimilar patterns inside aggregates of organisms. Physica A 388, 727–731 (2009)

    Article  Google Scholar 

  23. Bejan, A., Lorente, S.: The constructal law of design and evolution in nature. Philos. Trans. R. Soc. B 365, 1335–1347 (2010)

    Article  Google Scholar 

  24. Bejan, A., Ledezma, G.A.: Street tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point. Physica A 255, 211–217 (1998)

    Article  Google Scholar 

  25. Miguel, A.F.: Constructal theory of pedestrian dynamics. Phys. Lett. A 373, 1734–1738 (2009)

    Article  CAS  Google Scholar 

  26. Bejan, A., Rocha, L.A.O., Lorente, S.: Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int. J. Therm. Sci. 39, 949–960 (2000)

    Article  CAS  Google Scholar 

  27. Wechsatol, W., Lorente, S., Bejan, A.: Tree-shaped flow structures with local junction losses. Int. J. Heat Mass Tran. 49, 2957–2964 (2006)

    Article  Google Scholar 

  28. Reis, A.H., Miguel, A.F., Aydin, M.: Constructal theory of flow architecture of the lungs. Med. Phys. 31, 1135–1140 (2004)

    Article  CAS  Google Scholar 

  29. Miguel, A.F.: Dendritic structures for fluid flow: laminar, turbulent and constructal design. J. Fluid Struct. 26, 330–335 (2010)

    Article  Google Scholar 

  30. Miguel, A.F.: Fluid flow in tree-shaped constructal networks: porosity, permeability and inertial parameter. Defect Diffusion Forum 297–301, 408–412 (2010)

    Article  Google Scholar 

  31. Miguel, A.F., Reis, A.H., Melgao, M.: Urban indoor-outdoor aerosol measurements in Portugal and the global warming scenario. Int. J. Global Warming 1, 356–367 (2009)

    Article  Google Scholar 

  32. Miguel, A.F., Reis, A.H., Aydin, M.: Aerosol particle deposition and distribution in bifurcating ventilation ducts. J. Hazard. Mate. B 116, 249–255 (2004)

    Article  CAS  Google Scholar 

  33. Miguel, A.F., Aydin, M., Reis, A.H.: Indoor deposition and forced re-suspension of respirable particles. Indoor Built. Environ. 14, 391–396 (2005)

    Article  CAS  Google Scholar 

  34. Pope, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D., Godleski, J.J.: Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71–77 (2004)

    Article  Google Scholar 

  35. Ganderton, D.: Targeted delivery of inhaled drugs: current challenges and future goals. J. Aerosol Med. 12, S3–S8 (1999)

    Google Scholar 

  36. Smith, S.J., Bernstein, J.A.: Therapeutic uses of lung aerosols. In: Hickey, A.J. (ed.) Inhalation Aerosol: Physical and Biological Basis for Therapy, pp. 233–269. Dekker, New York (1996)

    Google Scholar 

  37. Miguel, A.F.: Porous media and filtration. In: Ingham, D.B., Mamut, E., Pop, I., Bejan, A. (eds.) Emerging Technologies and Techniques in Porous Media, pp. 419–431. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  38. Miguel, A.F., Reis, A.H.: Suspension flow with deposition in lung airway bifurcations in different breathing conditions. In: Bronna, O.E. (ed.) New Developments in Hazardous Materials Research, pp. 17–29. Nova Publishers, New York (2006)

    Google Scholar 

  39. Miguel, A.F., Reis, A.H., Aydin, M., Silva, A.M.: Particle deposition in airway bifurcations in different breathing conditions. J. Aerosol. Sci. 35(s2), 1125–1126 (2004)

    Google Scholar 

  40. Hinds, W.C.: Aerosol Technology. Wiley, New York (1999)

    Google Scholar 

  41. Patton, J.: Mechanisms of macromolecule absorption by the lungs. Adv. Drug Del. Rev. 19, 3–36 (1996)

    Article  CAS  Google Scholar 

  42. Edwards, D.A., Hanes, J., Caponetti, G., Hrkach, J., Ben-Jebria, A., Eskew, M.L., Mintzes, J., Deaver, D., Lotan, N., Langer, R.: Large porous particles for pulmonary drug delivery. Science 20, 1868–1872 (1997)

    Article  Google Scholar 

  43. Inglesby, T., Henderson, D., Bartlett, J., Ascher, M., Eitzen, E., Friedlander, A., Hauer, J., McDade, J., Osterholm, M., O’Toole, T., Parker, G., Perl, T., Russell, P., Tonat, K.: Anthrax as a biological weapon: medical and public health management. J. Am. Med. Assoc. 281, 1735–1745 (1999)

    Article  CAS  Google Scholar 

  44. Balik, G., Reis, A.H., Aydin, M., Miguel, A.F.: Behavior of submicrometer particles in periodic alveolar airflows. Eur. J. Appl. Physiol. 102, 677–683 (2008)

    Article  CAS  Google Scholar 

  45. Valentin, J.: Guide for the practical application of the ICRP human respiratory tract model: ICRP supporting guidance. Ann. ICRP 32, 13–14 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António F. Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miguel, A.F. (2012). Lungs as a Natural Porous Media: Architecture, Airflow Characteristics and Transport of Suspended Particles. In: Delgado, J. (eds) Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21966-5_5

Download citation

Publish with us

Policies and ethics