Oscillatory Systems with Three Separated Time Scales: Analysis and Computation

  • Gil Ariel
  • Björn Engquist
  • Yen-Hsi Richard Tsai
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 82)


We study a few interesting issues that occur in multiscale modeling and computation for oscillatory dynamical systems that involve three or more separated scales. A new type of slow variables which do not formally have bounded derivatives emerge from averaging in the fastest time scale. We present a few systems which have such new slow variables and discuss their characterization. The examples motivate a numerical multiscale algorithm that uses nested tiers of integrators which numerically solve the oscillatory system on different time scales. The communication between the scales follows the framework of the Heterogeneous Multiscale Method. The method’s accuracy and efficiency are evaluated and its applicability is demonstrated by examples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ariel, B. Engquist, and R. Tsai. A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comp., 78:929–956, 2009.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    G. Ariel, B. Engquist, and R. Tsai. Numerical multiscale methods for coupled oscillators. Multi. Mod. Simul., 7:1387–1404, 2009.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    G. Ariel, B. Engquist, and R. Tsai. A reversible multiscale integration method. Comm. Math. Sci., 7:595–610, 2009.MathSciNetMATHGoogle Scholar
  4. 4.
    V.I. Arnol’d. Mathematical methods of classical mechanics. Springer-Verlag, New York, 1989.Google Scholar
  5. 5.
    Z. Artstein, I. G. Kevrekidis, M. Slemrod, and E. S. Titi. Slow observables of singularly perturbed differential equations. Nonlinearity, 20(11):2463–2481, 2007.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Z Artstein, J. Linshiz, and E. S. Titi. Young measure approach to computing slowly advancing fast oscillations. Multiscale Model. Simul., 6(4):1085–1097, 2007.Google Scholar
  7. 7.
    C. Beck. Brownian motion from deterministic dynamics. Phys. A, 169:324–336, 1990.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. P. Calvo and J. M. Sanz-Serna. Instabilities and inaccuracies in the integration of highly oscillatory problems. SIAM J. Sci. Comput., 31(3):1653–1677, 2009.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    W. E. Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci., 1(3):423–436, 2003.MathSciNetGoogle Scholar
  10. 10.
    W. E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–132, 2003.Google Scholar
  11. 11.
    W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: A review. Comm. Comput. Phys., 2:367–450, 2007.Google Scholar
  12. 12.
    W. E, D. Liu, and E. Vanden-Eijnden. Analysis of multiscale methods for stochastic differential equations. Commun. on Pure and Applied Math., 58:1544–1585, 2005.Google Scholar
  13. 13.
    B. Engquist and Y.-H. Tsai. Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comp., 74(252):1707–1742, 2005.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    I. Fatkullin and E. Vanden-Eijnden. A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model. J. Comp. Phys., 200:605–638, 2004.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    E. Fermi, J. Pasta, and S. Ulam. Studies of the nonlinear problems, i. Los Alamos Report LA-1940, 1955. Later published in Collected Papers of Enrico Fermi, ed. E. Segre, Vol. II (University of Chicago Press, 1965) p.978.Google Scholar
  16. 16.
    B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput., 20(3):930–963, 1999.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    C. W. Gear and I. G. Kevrekidis. Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput., 24(4):1091–1106 (electronic), 2003.Google Scholar
  18. 18.
    C. W. Gear and I. G. Kevrekidis. Constraint-defined manifolds: a legacy code approach to low-dimensional computation. J. Sci. Comput., 25(1-2):17–28, 2005.MathSciNetMATHGoogle Scholar
  19. 19.
    C.W. Gear and K.A. Gallivan. Automatic methods for highly oscillatory ordinary differential equations. In Numerical analysis (Dundee, 1981), volume 912 of Lecture Notes in Math., pages 115–124. Springer, 1982.Google Scholar
  20. 20.
    D. Givon and R. Kupferman. White noise limits for discrete dynamical systems driven by fast deterministic dynamics. Phys. A, 335(3-4):385–412, 2004.MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Givon, R. Kupferman, and A.M. Stuart. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity, 17:R55–R127, 2004.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    M. Holland and I. Melbourne. Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2), 76(2):345–364, 2007.Google Scholar
  23. 23.
    H.-O. Kreiss. Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal., 16(6):980–998, 1979.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    H.-O. Kreiss. Problems with different time scales. In Acta numerica, 1992, pages 101–139. Cambridge Univ. Press, 1992.Google Scholar
  25. 25.
    H.-O. Kreiss and J. Lorenz. Manifolds of slow solutions for highly oscillatory problems. Indiana Univ. Math. J., 42(4):1169–1191, 1993.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    A.M. Majda, I. Timofeyev, and E. Vanden-Eijnden. Stochastic models for selected slow variables in large deterministic systems. Nonlinearity, 19:769–794, 2006.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    I. Melbourne and A. M. Stuart. A note on diffusion limits of chaotic skew product flows. Nonlinearity, 24:1361–1367, 2011.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    G. Papanicolaou. Introduction to the asymptotic analysis of stochastic equations. In Modern modeling of continuum phenomena, volume 16 of Lectures in Applied Mathematics, pages 47–109. Amer. Math. Soc., Providence, RI, 1977.Google Scholar
  29. 29.
    G. A. Pavliotis and A. M. Stuart. Multiscale Methods: Averaging and Homogenization. Number 53 in Texts in Applied Mathematics. Springer-Verlag, New York, 2008.Google Scholar
  30. 30.
    R.L. Petzold, O.J. Laurent, and Y. Jeng. Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 6:437–483, 1997.CrossRefGoogle Scholar
  31. 31.
    J. M. Sanz-Serna. Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal., 29(3):595–605, 2009.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    R.E. Scheid. The accurate numerical solution of highly oscillatory ordinary differential equations. Mathematics of Computation, 41(164):487–509, 1983.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    M. Tao, H. Owhadi, and J. Marsden. Non-intrusive and structure preserving multiscale integration of stiff odes, sdes and hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8:1269-1324, 2010.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    E. Vanden-Eijnden. Numerical techniques for multi-scale dynamical systems with stochastic effects. Comm. Math. Sci., 1:385–391, 2003.MathSciNetMATHGoogle Scholar
  35. 35.
    E. Vanden-Eijnden. On HMM-like integrators and projective integration methods for systems with multiple time scales. Commun. Math. Sci., 5:495–505, 2007.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gil Ariel
    • 1
  • Björn Engquist
    • 2
  • Yen-Hsi Richard Tsai
    • 2
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.Department of Mathematics and Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA

Personalised recommendations