Heuristic Pattern Search for Bound Constrained Minimax Problems

  • Isabel A. C. P. Espírito Santo
  • Edite M. G. P. Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


This paper presents a pattern search algorithm and its hybridization with a random descent search for solving bound constrained minimax problems. The herein proposed heuristic pattern search method combines the Hooke and Jeeves (HJ) pattern and exploratory moves with a randomly generated approximate descent direction. Two versions of the heuristic algorithm have been applied to several benchmark minimax problems and compared with the original HJ pattern search algorithm.


Minimax problems Hooke and Jeeves heuristic pattern search hybridization random descent search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)zbMATHGoogle Scholar
  2. 2.
    Di Pillo, G., Grippo, L.: A smooth method for the finite minimax problem. Mathematical Programming 60, 187–214 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91, 201–213 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fourer, R., Gay, D.M., Kernighan, B.: A modeling language for mathematical programing. Management Science 36, 519–554 (1990), CrossRefzbMATHGoogle Scholar
  5. 5.
    Hedar, A.-R., Fukushima, M.: Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, 291–308 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal on Associated Computation 8, 212–229 (1961)zbMATHGoogle Scholar
  7. 7.
    Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for minimax problems. In: Proceedings of IEEE 2002 Congress on Evolutionary Computation, pp. 1576–1581 (2001) ISBN: 0-7803-7278-6Google Scholar
  8. 8.
    Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization 9, 1082–1099 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lewis, R.M., Torczon, V.: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM Journal on Optimization 12, 1075–1089 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Liuzzi, G., Lucidi, S., Sciandrone, M.: A derivative-free algorithm for linearly constrained finite minimax problems. SIAM Journal on Optimization 16, 1054–1075 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. TR 798, ICS, Academy of Science of the Czech Republic (January 2000)Google Scholar
  12. 12.
    Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for tackling operations research problems. In: Proceedings of IEEE 2005 Swarm Intelligence Symposium, Pasadena, USA, pp. 53–59 (2005)Google Scholar
  13. 13.
    Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetic particle swarm optimization. Annals of Operations Research 156, 99–127 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. Journal of Optimization Theory and Applications 119, 459–484 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Tahk, M.-J., Woo, H.-W., Park, M.-S.: A hybrid optimization method of evolutionary and gradient search. Engineering Optimization 39, 87–104 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Optimization 7, 1–25 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Xu, S.: Smoothing method for minimax problems. Computational Optimization and Applications 20, 267–279 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Ye, F., Liu, H., Zhou, S., Liu, S.: A smoothing trust-region Newton-CG method for minimax problem. Applied Mathmatics and Computation 199, 581–589 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Zhu, Z., Cai, X., Jian, J.: An improved SQP algorithm for solving minimax problems. Applied Mathmatics Letters 22, 464–469 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Isabel A. C. P. Espírito Santo
    • 1
  • Edite M. G. P. Fernandes
    • 1
  1. 1.Algoritmi R & D CentreUniversity of MinhoBragaPortugal

Personalised recommendations