Advertisement

Improvement of Spatial Data Quality Using the Data Conflation

  • Silvija Stankutė
  • Hartmut Asche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

After the introduction of digital mapping techniques in the 1960s and then GIS shortly afterwards, researchers realized that error and uncertainty in digital spatial data had the potential to cause problems that had not been experienced with paper maps [1]. Spatial data quality is a very active domain in geographic information research. This paper describes the significance of data quality and how is data quality defined. Data conflation can help to increase the amount of suitable for usage data. This paper analyzes results of spatial data conflation.

Keywords

data fusion data conflation spatial data quality edge matching vector data homogenization heterogeneous spatial data data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunter, G.J., Bregt, A.K., Heuvelink, G.B.M., De Bruin, S., Virrantaus, K.: Spatial Data Quality: Problems and Prospects. In: Navratil, G. (ed.) Research Trends in Geographic Informations Science. Lecture Notes in Geoinformation and Cartography, pp. 101–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Stankutė, S., Asche, H.: An Integrative Approach to Geospatial Data Fusion. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5592, pp. 490–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Veregin, H.: Data Quality Parameters. In: Longley, P.A., Goodchild, M.F. (eds.) Geographical Information Systems, Principles and Technical Issues, pp. 177–189. John Wiley & Sons, Chichester (1999)Google Scholar
  4. 4.
    Olteanu, A.-M.: A Multi-Citeria Fusion Approach For Geographical Data Matching. In: Proceedings of the 5th International Symposium Spatial Data Quality 2007, Enschede, June 13-15 (2007)Google Scholar
  5. 5.
    Chrisman, N.: Development in the Treatment of Spatial Data Quality. In: Devillers, R., Jeansoulin, R. (eds.) Fundamentals of Spatial Data Quality, pp. 21–30. Iste, London (2006)CrossRefGoogle Scholar
  6. 6.
    Devillers, R., Gervais, M., Bedard, Y., Jeansoulin, R.: Spatial Data Quality: From Metadata to Quality Indicators and Contextual End-User Manual. In: Proceedings of the OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management, Istanbul, March 21-22, 2002, pp. 45–55 (2002)Google Scholar
  7. 7.
    Onchaga, R., Morales, J., Widya, I., Lambert, J.M.: An Ontology Framework for Quality of Geographical Information Services. In: Proceedings of the 16th International Symposium on Advances in Geographic Information Systems, ACM GIS 2008, Irvine, California, USA, November 5-7 (2008)Google Scholar
  8. 8.
    Comber, A.J., Fisher, P.F., Wadsworth, R.A.: Semantics, Metadata, Geographical Information and Users. Transactions in GIS 12(3), 287–291 (2008)CrossRefGoogle Scholar
  9. 9.
    Hake, G., Grünreich, D., Meng, L.: Kartographie. Visualisierung raum-zeitlicher Informationen. Berlin, New York (2002)Google Scholar
  10. 10.
    Albrecht, J.: Key Concepts & Techniques in GIS. Sage, London (2007)CrossRefGoogle Scholar
  11. 11.
    Balley, S., Parent, C., Spaccapietra, S.: Modelling geographic data with multiple representations. International Journal of Geographical Information Science 18(4), 327–352 (2004)CrossRefGoogle Scholar
  12. 12.
    Stankute, S., Asche, H.: Geometrical DCC-Algorithm for Merging Polygonal Geospatial Data. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 515–527. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Chrisman, N.R.: The Error Component in Spatial Data. In: Longley, P.A., Goodchild, M.F., Rhind, D.J. (eds.) Geographical Information Systems: Principles and Applications, vol. 1, pp. 165–174. Longman, London (1990)Google Scholar
  14. 14.
    Haunert, J.-H.: Link based Conflation of Geographic Datasets. In: Proceedings of the 8th ICA WORKSHOP on Generalisation and Multiple Representation, A Coruña, July 7-8 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silvija Stankutė
    • 1
  • Hartmut Asche
    • 1
  1. 1.Department of GeographyUniversity of PotsdamPotsdamGermany

Personalised recommendations