Advertisement

Towards a Planning Decision Support System for Low-Carbon Urban Development

  • Ivan Blecic
  • Arnaldo Cecchini
  • Matthias Falk
  • Serena Marras
  • David R. Pyles
  • Donatella Spano
  • Giuseppe A. Trunfio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

The flows of carbon and energy produced by urbanized areas represent one of the aspects of urban sustainability that can have an important impact on climate change. For this reason, in recent years the quantitative estimation of the so-called urban metabolism components has increasingly attracted the attention of researchers from different fields. On the other hand, it has been well recognized that the structure and design of future urban development can significantly affect the flows of material and energy exchanged by an urban area with its surroundings. In this context, the paper discusses a software framework able to estimate the carbon exchanges accounting for alternative scenarios which can influence urban development. The modelling system is based on four main components: (i) a Cellular Automata model for the simulation of the urban land-use dynamics; (ii) a transportation model, able to estimate the variation of the transportation network load and (iii) the ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) model which was tightly coupled with the (iv) mesoscale weather model  WRF for the estimation of the relevant urban metabolism components. An in-progress application to the city of Florence is presented and discussed.

Keywords

urban metabolism urban sustainability cellular automata land-use dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolman, A.: The metabolism of cities. Scientific American 213 (1965)Google Scholar
  2. 2.
    Newman, P.: Sustainability and cities: extending the metabolism model. Landscape and urban planning 44 (1999)Google Scholar
  3. 3.
    White, R., Engelen, G., Uljee, I.: The use of constrained cellular automata for high resolution modelling of urban land use dynamics. Environment and Planning B 24, 323–343 (1997)CrossRefGoogle Scholar
  4. 4.
    White, R., Engelen, G.: High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems 2824, 383–400 (2000)CrossRefGoogle Scholar
  5. 5.
    Blecic, I., Cecchini, A., Trunfio, G.A.: A General-Purpose Geosimulation Infrastructure for Spatial Decision Support. Transactions on Computational Science 6, 200–218 (2009)Google Scholar
  6. 6.
    Tsekeris, T., Stathopoulos, A.: Gravity models for dynamic transport planning: Development and implementation in urban networks. Journal of Transport Geography 14(2), 152–160 (2006)CrossRefGoogle Scholar
  7. 7.
    Tsekeris, T., Stathopoulos, A.: Real-time dynamic Origin-Destination matrix adjustment with simulated and actual link flows in urban networks. Transportation Research Record. Journal of the Transportation Research Board 1857, 117–127 (2003)CrossRefGoogle Scholar
  8. 8.
    Pyles, R.D., Weare, B.C., Paw, U.K.T.: The UCD Advanced Canopy-Atmosphere-Soil Algorithm: Comparison with observations from different climate and vegetation regimes. Q.J.R. Meteorol. Soc. 126, 2951–2980 (2000)CrossRefGoogle Scholar
  9. 9.
    Pyles, R.D., Weare, B.C., Paw, U.K.T., Gustafson, W.: Coupling between the University of California, Davis, Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) and MM5: Preliminary Results for for Western –North America. J Appl. Meteorol. 42, 557–569 (2003)CrossRefGoogle Scholar
  10. 10.
    Staudt, K., Falge, E., Pyles, R.D., Paw, U.K.T., Foken, T.: Sensitivity and predictive uncertainty of the ACASA model at a spruce forest site. Biogeosciences 7, 3685–3705 (2010)CrossRefGoogle Scholar
  11. 11.
    Marras, S., Spano, D., Pyles, R.D., Falk, M., Snyder, R.L., Paw, U.K.T.: Application of the ACASA model in urban environments: two case studies. In: AMS Conference on Ninth Symposium on the Urban Environment, Keystone, Colorado, USA, August 2-6 (2010)Google Scholar
  12. 12.
    Falk, M., Pyles, R.D., Marras, S., Spano, D., Snyder, R.L., Paw, U.K.T.: A Regional Study of Urban Fluxes from a Coupled WRF-ACASA Model. American Geosciences Union Fall Meeting. San Francisco, California (2010)Google Scholar
  13. 13.
    Staudt, K., Serafimovich, A., Siebicke, L., Pyles, R.D., Falge, E.: Vertical structure of evapotranspiration at a forest site (a case study). Agric. Forest Meteorol. 151, 709–729 (2011)CrossRefGoogle Scholar
  14. 14.
    Marras, S., Pyles, R.D., Sirca, C., Paw, U.K.T., Snyder, R.L., Duce, P., Spano, D.: Evaluation of the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model performance over Mediterranean maquis ecosystem. Agric. Forest Meteorol. 151, 730–745Google Scholar
  15. 15.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A Description of the Advanced Research WRF Version 3. NCAR/TN–475 + STR - NCAR TECHNICAL NOTE (2008)Google Scholar
  16. 16.
    Batty, M., Xie, Y.: From cells to cities. Environment and Planning B, 31–48 (1994)Google Scholar
  17. 17.
    Clarke, K.C., Gaydos, L.J.: Loose-coupling a cellular automaton model and GIS: long-term urban growth predictions for San Francisco and Baltimore. International Journal of Geographic Information Science, 699–714 (1998)Google Scholar
  18. 18.
    Erlander, S., Stewart, N.F.: The Gravity Model in Transportation Analysis: Theory and Extensions. VSP, Utrecht (1990)Google Scholar
  19. 19.
    Meyers, T.P., Paw, U.K.T.: Testing of a higher-order closure model for modelling airflow within and above plant canopies. Bound. Lay. Meteorol. 31, 297–311 (1986)CrossRefGoogle Scholar
  20. 20.
    Meyers, T.P., Paw, U.K.T.: Modelling the plant canopy micrometeorology with higher-order closure principles. Agric. For. Meteorol. 41, 143–163 (1987)CrossRefGoogle Scholar
  21. 21.
    Kusaka, H., Kondo, H., Kikegawa, Y., Kimura, F.: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound-Layer Meteorol 101, 329–358 (2001)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Ran, B., Boyce, D.: Modeling Dynamic Transportation Networks: An Intelligent Transportation System Oriented Approach, 2nd edn. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  24. 24.
    Staudt, K., Falge, E., Pyles, R.D., PawU, K.T., Foken, T.: Sensitivity and predictive uncertainty of the ACASA model at a spruce forest site. Biogeosciences 7, 3685–3705 (2010), www.biogeosciences.net/7/3685/2010/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ivan Blecic
    • 1
    • 4
  • Arnaldo Cecchini
    • 1
  • Matthias Falk
    • 2
    • 4
  • Serena Marras
    • 3
    • 4
  • David R. Pyles
    • 2
    • 4
  • Donatella Spano
    • 3
    • 4
  • Giuseppe A. Trunfio
    • 1
    • 4
  1. 1.DADU, Department of Architecture, Planning and DesignUniversity of SassariAlgheroItaly
  2. 2.LAWR, Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  3. 3.DESA, Dipartimento di Economia e Sistemi ArboreiUniversità di SassariItaly
  4. 4.CMCC, Centro Euro-Mediterraneo per i Cambiamenti Climatici, IAFENT-SassariItaly

Personalised recommendations