Advertisement

Application of Chaos Control Techniques to Fluid Turbulence

  • Sridhar Muddada
  • B. S. V. PatnaikEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In non-linear dynamics, sensitive dependence on initial conditions is known as chaos, which is pervasive in fluids. All fluid mechanical systems in nature and technology are prone to chaos. The popular butterfly effect is often stated as follows: if a butterfly flutters in Brazil, it can cause torandoes in Texas [1]. Understanding chaos in fluids is the chief outstanding problem in non-linear science and is often regarded with reverence. To keep it straight and simple, chaos in the context of fluids is known as turbulence and its various facets are well investigated by researchers. However, the outstanding nature of the turbulent flows, continues to attract the attention and fascination of physicists, engineers and Mathematicians alike. The non-linear partial differential equations, given by Navier-Stokes exactly describe turbulent flows. Ideally, it is possible to employ a fine grid resolution and simulate the entire spectrum of eddy sizes that are present in the flow. Thus, temporal and spatial behaviour of fluid motion is described by partial differential equations. By approximating the spatial co-ordinates with a finite grid, a set of algebraic equations can be derived and time marching strategies can be devised. The level of complication increases as fluid dynamics involves multi-degree of freedom systems [2].

Keywords

Drag Reduction Bluff Body Chaos Control Twisted Tape Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are deeply indebted to some anonymous professors from NUS, Singapore and ASU, USA for their insightful comments on an earlier version of this chapter.

References

  1. [1].
    Gleick, J.: Chaos: Making a New Science. Cardinal, Sphere Books Ltd., London (1988)Google Scholar
  2. [2].
    Tél, T., Gruiz, M.: Chaotic Dynamics: An Introduction Based on Classical Mechanics. Cambridge University Press, New York (2006)zbMATHCrossRefGoogle Scholar
  3. [3].
    Gad-El-Hak, M.: Flow Control: Fundamentals and Practices. Spinger, New York (1998)zbMATHGoogle Scholar
  4. [4].
    Lumley, J., Blossey, P.: Control of Turbulence. Ann. Rev. Fluid Mech. 30, 311–327 (1998)MathSciNetCrossRefGoogle Scholar
  5. [5].
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6].
    Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7].
    Sreenivasan, K.R.: Fluid turbulence. Rev. Mod. Phys. 71(2), S383–S395 (1999)CrossRefGoogle Scholar
  8. [8].
    Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)CrossRefGoogle Scholar
  9. [9].
    Patnaik, B.S.V., Narayana, P.A.A., Seetharamu, K.N.: Numerical simulation of laminar flow past a transversely vibrating circular cylinder. J. Sound Vib. 228(3), 459–475 (1999)CrossRefGoogle Scholar
  10. [10].
    Patnaik, B.S.V., Wei, G.W.: Controlling wake turbulence. Phys. Rev. Lett. 88, 054502 (2002)CrossRefGoogle Scholar
  11. [11].
    Muddada, S., Patnaik, B.S.V.: An active flow control strategy for the suppression of vortex structures behind a circular cylinder. Eur. J. Mech. B Fluids 29, 93–104 (2010)zbMATHCrossRefGoogle Scholar
  12. [12].
    Muddada, S., Patnaik, B.S.V.: An assessment of turbulence models for the prediction of flow past a circular cylinder with momentum injection. J. Wind. Eng. Ind. Aerod. 98, 575–591 (2010)CrossRefGoogle Scholar
  13. [13].
    Pope, S.B.: The Turbulent Flows. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  14. [14].
    Egolf, D.A., Melnikov, I.V., Pesch, W., et al.: Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bernard convection. Nature 404(6779), 733–736 (2000)CrossRefGoogle Scholar
  15. [15].
    Garfinkel, A., Spano, M.L., Ditto, W.L., et al.: Controlling cardiac chaos. Science, 257(5074), 1230–1235 (1992)Google Scholar
  16. [16].
    Gollub, J.P., Swinney, H.S.: Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35,927–930(1975)CrossRefGoogle Scholar
  17. [17].
    Moon, F.C.: Chaotic Vibrations. Wiley, New York (1987)zbMATHGoogle Scholar
  18. [18].
    Rössler, O.E., Wegmann, K.: Chaos in the Zhabotinskii reaction. Nature, 271, 89–90 (1978)Google Scholar
  19. [19].
    Olsen, L.F., Schaffer, W.M.: Chaos vs. noisy periodicity: Alternative hypotheses for childhood epidemics. Science, 249, 499–504 (1990)Google Scholar
  20. [20].
    Arnsdorf, M.F.: Arrhythmogenesis, the electrophysiologic matrix, and electrophysiologic chaos. Curr. Opin. Cardiol. 6(1), 3–10 (1991)CrossRefGoogle Scholar
  21. [21].
    Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (2004)zbMATHGoogle Scholar
  22. [22].
    Fefferman, C.L.: Existence and smoothness of the Navier-Stokes equation, Official problem description, Clay Mathematics Institute (http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf)
  23. [23].
    Reynolds, O.: On the dynamical theory of incompressible viscous flows and the determination of the criterion. Philos. Trans. R. Soc. London Ser. A 186, 123–161 (1894)Google Scholar
  24. [24].
    Tritton, D.J.: Physical Fluid Dynamics. Oxford University Press, New York (2007)Google Scholar
  25. [25].
    Davidson, P.A.: Turbulence: An introduction for Scientists and Engineers. Oxford University Press, New York (2007)Google Scholar
  26. [26].
    Gad-el-Hak, M., Her Mann Tsai.: Transition and Turbulence control. Lecture Notes Series, Institute of Mathematical Sciences, vol. 8. National Univercity of Singapore (2006)Google Scholar
  27. [27].
    Rodi, W.: On the simulation of turbulent flow past bluff bodies. J. Wind Engg. Ind. Aerodyn. 46–47, 3–19 (1993)CrossRefGoogle Scholar
  28. [28].
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flow. Comput. Meth. Appl. Mech. Eng. 3(2), 269–289 (1974)zbMATHCrossRefGoogle Scholar
  29. [29].
    Kline, S.J., Robinson, S.K.: Quasi-coherent structures in the turbulent boundary layer: part I. Status report on a community - wide summary of the data. In: Kline, S.J., Afgan, N.H. (eds.), Near-wall Turbulence, pp. 200–217. Hemisphere, New York (1990)Google Scholar
  30. [30].
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid. Mech. 23, 601–639 (1991)CrossRefGoogle Scholar
  31. [31].
    Sreenivasan, K.R.: The turbulent boundary layer. In: Gad-el-Hak, M. (ed.), Frontiers in Experimental Fluid Mechanics, chap. 4, pp. 159–209. Springer, Berlin (1989)CrossRefGoogle Scholar
  32. [32].
    Cantwell, B.J.: Organized motion in turbulent flow. Annu. Rev. Fluid. Mech. 75, 457–515 (1981)CrossRefGoogle Scholar
  33. [33].
    Gad-el-Hak, M., Bandyopadhyay, P.R.: Reynolds number effects in wall-bounded turbulent flows. Appl. Mech. Rev. 47, 307–365 (1994)CrossRefGoogle Scholar
  34. [34].
    Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 73–95 (1981)CrossRefGoogle Scholar
  35. [35].
    Thorpe, S.A.: The turbulent Ocean. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  36. [36].
    Theodorsen, T.: Mechanism of turbulence. In: Proceedings of Second Midwestern Conference on Fluid Mechanics, Ohio State University, USA (1952)Google Scholar
  37. [37].
    Kline, S.J., Reynolds, W.C., Schraub, F.A., et al.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)CrossRefGoogle Scholar
  38. [38].
    Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid. Mech. 30, 539–578 (1998)MathSciNetCrossRefGoogle Scholar
  39. [39].
    Chernyshenko, S.F., Baig, M.F.: Streaks and vortices in near-wall turbulence. Phil. Trans. R. Soc. A. 363, 1097–1107 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40].
    Arecchi, F.T., Boccaletti, S., Ciofini, M., et al.: The control of chaos: Theoretical schemes and experimental realization. (Int. J. Bifurcat. Chaos 8(8), 1643–1655 (1998)Google Scholar
  41. [41].
    Auerbach, D., Cvitanovic, P., Eckmann, J.-P., et al.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 2387–2390 (1987)MathSciNetCrossRefGoogle Scholar
  42. [42].
    Ditto, W.L., Rauseo, S.N., Spano, M.L.: Experimental control of chaos. Phys. Rev. Lett. 65, 3211–3214 (1990)CrossRefGoogle Scholar
  43. [43].
    Hunt, E.R.: Stabilizing high-period orbits in a chaotic system: The diode resonator. Phys. Rev. Lett. 67, 1953–1955 (1991)CrossRefGoogle Scholar
  44. [44].
    Roy, R., Murphy, T.W., Maier, T.D. Jr., et al.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68, 1259–1262 (1992)CrossRefGoogle Scholar
  45. [45].
    Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)zbMATHCrossRefGoogle Scholar
  46. [46].
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)CrossRefGoogle Scholar
  47. [47].
    Xiao, J., Hu, G., Yang, J., et al.: Controlling turbulence in the complex Ginzburg-Landau equation. Phys. Rev. Lett. 81, 5552–5555 (1998)CrossRefGoogle Scholar
  48. [48].
    Boccaletti, S., Bragard, J., Arecchi, F.T.: Controlling and synchronizing space time chaos. Phys. Rev. E 59, 6574–6478 (1999)CrossRefGoogle Scholar
  49. [49].
    Junge, L., Parlitz, U.: Synchronization and control of coupled Ginzburg-Landau equations using local coupling. Phys. Rev. E 61, 3736–3742 (2000)CrossRefGoogle Scholar
  50. [50].
    Roussopoulos, K.: Feedback control of vortex shedding at low Reynolds number. J. Fluid Mech. 248, 267–296 (1993)CrossRefGoogle Scholar
  51. [51].
    Gillies, E.A.: Multiple sensor control of vortex shedding. AIAA Journal 39(4), 748–750 (2000)MathSciNetCrossRefGoogle Scholar
  52. [52].
    Wei, G.W.: Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing. Phys. Rev. Lett., 86(16), 3542–3545 (2001)CrossRefGoogle Scholar
  53. [53].
    Blevins, R.D.: Flow Induced Vibrations. Van Nostrand Reinhold, New York (1990)Google Scholar
  54. [54].
    Park, D.S., Ladd, D.M., Hendricks, E.W.: Feedback control of von Karman vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluid. 6, 2390–2405 (1994)zbMATHCrossRefGoogle Scholar
  55. [55].
    Gunzburger, M.D., Lee, H.C.: Feedack control of vortex shedding. Tran. ASME J. Appl. Mech. 63, 828–835 (1996)zbMATHCrossRefGoogle Scholar
  56. [56].
    Min, C., Choi, H.: Suboptimal feedback control of vortex shedding at low reynolds numbers. J. Fluid Mech., 401, 123–156 (1999)zbMATHCrossRefGoogle Scholar
  57. [57].
    Tokumaru, P.T., Dimotakis, P.E.: Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224, 77–90 (1991)CrossRefGoogle Scholar
  58. [58].
    Warui, H.M., Fujisawa, N.: Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations. Exp. Fluids 21, 49–56 (1996)CrossRefGoogle Scholar
  59. [59].
    Ffowcs Williams, J.E., Zhao, B.C.: The active control of vortex shedding. J. Fluid. Struc. 3, 115–122 (1989)CrossRefGoogle Scholar
  60. [60].
    Fujisawa, N., Takeda, G.: Flow control around a circular cylinder by internal acoustic excitation. J. Fluid. Struc. 17, 903–913 (2003)CrossRefGoogle Scholar
  61. [61].
    Chen, Z., Fan, B., Zhou, B., Aubry, N.: Control of vortex shedding behind a circular cylinder using electromagnetic forces. Mod. Phys. Lett. B, 19(28/29), 1627–1630 (2005)zbMATHCrossRefGoogle Scholar
  62. [62].
    Posdziech, O., Grundmann, R.: Electromagnetic control of seawater flow around circular cylinders. Eur. J. Mech. B Fluids 20, 255–274 (2001)zbMATHCrossRefGoogle Scholar
  63. [63].
    Cattafesta, L.N., Garg, S., Shukla, D.: Development of piezoelectric actuators for active flow control. AIAA Journal 39(8), 1562–1568 (2001)CrossRefGoogle Scholar
  64. [64].
    Kurimoto, N., Suzuki, Y., Kasagi, N.: Active control of lifted diffusion flumes with arrayed micro actuators. Exp. Fluids 39, 995–1008 (2005)CrossRefGoogle Scholar
  65. [65].
    Gerhard, J., Pastoor, M., King, R., et al.: Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper, 2003–4261 (2003)Google Scholar
  66. [66].
    Carpenter, P.W., Kudar, K.L., Ali, R., et al.: A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control. Phil. Trans. R. Soc. A 365, 2419–2441 (2007)MathSciNetCrossRefGoogle Scholar
  67. [67].
    Kroo, I.: Drag due to lift: concepts for prediction and reduction. Annu. Rev. Fluid Mech. 33, 587–617 (2001)CrossRefGoogle Scholar
  68. [68].
    Sobieczky, H., Seebass, A.R.: Supercritical airfoil and wing design. Annu. Rev. Fluid Mech. 16, 337–363 (1984)CrossRefGoogle Scholar
  69. [69].
    Braslow, A.L.: A history of suctian-type laminar-flow control with emphasis on flight research. In: Monographs in Aerospace History, no. 13. NASA History Division, Office of Policy and Plans, NASA Heaquarters, Washington, DC (1999)Google Scholar
  70. [70].
    Carpenter, P.W.: Status of transition delay using compliant walls. In: Bushnell, D.M., Hefner, J.N. (eds.), Viscous drag reduction in boundary layers. Progr. Astronaut. Aeronaut. vol. 123, pp. 79–113. Washington, DC: AIAA (1990)Google Scholar
  71. [71].
    Carpenter, P.W., Lucey, A.D., Davies, C.: Progress on the use of compliant walls for laminar-flow control. J. Aircraft. 38, 504–512 (2001)CrossRefGoogle Scholar
  72. [72].
    Walsh, M.J., Weinstein, L.M.: Drag and heat transfer on surfaces with small longitudinal fins. In: 11th AIAA, Fluid and Plasma Dynamics Conference, Seattle, Washington, 1161 (1978)Google Scholar
  73. [73].
    Bechert, D.W., Bruse, M., Hage, W., et al.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)CrossRefGoogle Scholar
  74. [74].
    Sirovich, L., Karlsson, S.: Turbulent drag reduction by passive mechanisms. Nature, 388, 753–755 (1997)CrossRefGoogle Scholar
  75. [75].
    Carpenter, P.W.: The right sort of roughness. Nature 388, 713–714 (1997)Google Scholar
  76. [76].
    Choi, K.S.: Fluid dynamics: the rough with the smooth. Nature 440, 754 (2006)CrossRefGoogle Scholar
  77. [77].
    Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 1, 303–325 (1990)zbMATHCrossRefGoogle Scholar
  78. [78].
    Medjo, T.T., Tenam, R., Ziane, M.: Optimal and robust control of fluid flows: Some theoretical and computational aspects. Trans. ASME App. Mech. Rev. 61(1), 23 (2008)Google Scholar
  79. [79].
    Guan, S., Zhou, Y.C., Wei, G.W., et al.: Controlling flow turbulence. Chaos 13(1), 64–70 (2003)Google Scholar
  80. [80].
    Zdravkovich, M.M.: Flow around circular cylinders: Fundamentals, vol. 1, pp. 672. Oxford University Press, New York (1997)Google Scholar
  81. [81].
    Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)MathSciNetCrossRefGoogle Scholar
  82. [82].
    Roshko, A.: Perspectives on bluff body aerodynamics, J. Wind. Eng. Ind. Aerod. 49, 79–100 (1993)CrossRefGoogle Scholar
  83. [83].
    Noto, K., Fujimoto, K.: Formulation and numerical methodology for three-dimensional wake of heated circular cylinder. Numer. Heat Tran. A Appl. 49(2), 129–158 (2006)CrossRefGoogle Scholar
  84. [84].
    Patnaik, B.S.V., Narayana, P.A.A., Seetharamu, K.N.: Numerical simulation of vortex shedding past a circular cylinder under the influence of buoyancy. Int. J. Heat Mass Tran. 42(18), 3495–3507 (1999)zbMATHCrossRefGoogle Scholar
  85. [85].
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington (1980)zbMATHGoogle Scholar
  86. [86].
    Perry, A.E., Chong, M.S., Lim, T.T.: The vortex shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 116, 77–90 (1982)CrossRefGoogle Scholar
  87. [87].
    Tang, G.N., Guan, S., Hu, G.: Controlling flow turbulence with moving controllers. Eur. Phys. J. B. 48, 259–264 (2005)CrossRefGoogle Scholar
  88. [88].
    Tang, G.N., Hu, G.: Controlling flow turbulence using local pinning feedback. Chin. Phys. Lett. 23(6), 1523–1526 (2006)MathSciNetCrossRefGoogle Scholar
  89. [89].
    Guan, S., Wei, G.W., Lai, C.H.: Controllability of flow turbulence. Phys. Rev. E. 69, 066214 (2004)CrossRefGoogle Scholar
  90. [90].
    Chen, Z., Aubry, N.: Closed-loop control of vortex-induced vibration. Comm. Nonlinear Science and Num. Simulation 10, 287–297 (2005)zbMATHCrossRefGoogle Scholar
  91. [91].
    Li, Z., Navon, I.M., Hussaini, M.Y., et al.: Optimal control of cylinder wakes via suction and blowing. Comp. Fluids 32, 149–171 (2003)zbMATHCrossRefGoogle Scholar
  92. [92].
    Arístegui, J., Tett, P., Hernández-Guerra, A., et al.: The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep Sea Research Part I: Oceanographic Research Papers 44, 71–96 (1997)CrossRefGoogle Scholar
  93. [93].
    Chomaz, J.M., Huerre, P., Redekopp, L.G.: Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60, 25–28 (1988)CrossRefGoogle Scholar
  94. [94].
    Beaudoin, J.F., Cadot, O., Aider, J.L., et al.: Bluff body drag reduction by extremum seeking control. J. Fluids Struc. 22, 973–978 (2006)CrossRefGoogle Scholar
  95. [95].
    Beaudoin, J.F., Cadot, O., Aider, J.L., et al.: Drag reduction of a bluff body using adaptive control methods. Phys. Fluids 18(8), 085107 (2006)CrossRefGoogle Scholar
  96. [96].
    Betz, A.: History of boundary layer control in Germany. In: Lachmann, G.V. (ed.), Boundary layer and flow control, pp. 1–20. Pergamon Press, New York (1961)Google Scholar
  97. [97].
    Modi, V.J.: Moving surface boundary-layer control: A review. J. Fluids Struc. 11, 627–663 (1997)CrossRefGoogle Scholar
  98. [98].
    Mokhtarian, F., Modi, V.J.: Fluid dynamics of airfoils with moving surface boundary-layer control. J Aircraft 25, 163–169 (1988)CrossRefGoogle Scholar
  99. [99].
    Launder, B.E., Sharma, B.I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat and Mass Trans. 1, 131–138 (1974)Google Scholar
  100. [100].
    Rodi, W.: Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Engg. Ind. Aerodyn. 69, 55–75 (1997)CrossRefGoogle Scholar
  101. [101].
    Manneville, P.: Instabilities, Chaos and Turbulence. Imperial College Press, London (2004)Google Scholar
  102. [102].
    Saddoughi, S.G., Veeravalli, S.V.: Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333–372 (1994)CrossRefGoogle Scholar
  103. [103].
    Tél, T., Alessandro de Moura, Grebogi, C., et al.: Chemical and biological activity in open flows: A dynamical system approach. Phys. Rep. 413, 91–196 (2005)Google Scholar
  104. [104].
    Brown, G.L., Roshko, A.: On the density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)CrossRefGoogle Scholar
  105. [105].
    Van Dyke, M.: An Album of Fluid Motion. Parabolic Press, Stanford (1988)Google Scholar
  106. [106].
    Private communication from Prof. T. YokomizoGoogle Scholar
  107. [107].
    Parnaudeau, P., Carlier, J., Heitz, D., et al.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Phys. Fluids 20, 085101 (2008)CrossRefGoogle Scholar
  108. [108].
    Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re D = 3900, Phys. Fluids 12(2), 403–417 (2000)zbMATHCrossRefGoogle Scholar
  109. [109].
    Lübcke, H., Schmidt, St., Rung, T., et al.: Comparison of LES and RANS in bluff-body flows. J. Wind. Eng. Ind. Aerod. 89, 1471–1485 (2001)Google Scholar
  110. [110].
    Kolmogorov, A.N.: Dissipation of energy in the locally isotropic turbulence. In: Friedlander, S.K., Topping, L. (eds.) Turbulence: Classic Papers on Statistical Theory, pp. 159–161. Interscience, New York (1961)Google Scholar
  111. [111].
    Head, M.R., Bandyopadhyay, P.: New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)CrossRefGoogle Scholar
  112. [112].
    Hunt, J.C.R., Carruthers, D.J., Fung, J.C.H.: Rapid distortion theory as a means of exploring the structure of turbulence. In: Sirovich, L. (ed.) New Perspectives in Turbulence, pp. 55–103. Springer, Berlin (1991)CrossRefGoogle Scholar
  113. [113].
    Liepmann, H.W.: The rise and fall of ideas in turbulence. Am. Sci. 67(2), 221–228 (1979)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Applied Mechanics, Fluid Mechanics LaboratoryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations