Equal Bisectors at a Vertex of a Triangle

  • R. Losada
  • T. Recio
  • J. L. Valcarce
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6785)


Given a triangle ABC, we study the conditions that its vertices must satisfy in order for the internal and external bisectors corresponding to one of the vertices to be equal. We investigate whether there are triangles for which the bisectors at each vertex are equal and other related properties. Automatic Deduction techniques (such as those described in [1]), implemented with CoCoA [2] and the dynamic geometry system GDI ([3], [4]), are used. Moreover, an ad-hoc GeoGebra [5] package has been developed (c.f. [6]) to facilitate the exploration of the problem and to improve the analysis and representation of the results in graphical form.


Dynamic Geometry Elementary Geometry Automatic Deduction Automatic Discovery Bisectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Recio, T., Vélez, P.: Automatic Discovery of Theorems in Elementary Geometry. Journal of Automated Reasoning 23, 63–82 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
  3. [3]
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers & Education 38(1-3), 21–35 (2002)CrossRefGoogle Scholar
  4. [4]
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Computers & Education 61(2,1), 139–152 (2003)MathSciNetzbMATHGoogle Scholar
  5. [5]
  6. [6]
    Losada, R.: Propiedad de color dinámico en geogebra,
  7. [7]
  8. [8]
    Wu, W.-t., Lü, X.-L.: Triangles with equal bisectors. Education Press, Beijing (1985) (in chinese)Google Scholar
  9. [9]
    Wang, D.: Elimination practice: software tools and applications. Imperial College Press, London (2004)CrossRefzbMATHGoogle Scholar
  10. [10]
    Botana, F.: Bringing more intelligence to dynamic geometry by using symbolic computation. In: Symbolic Computation and Education, pp. 136–150. World Scientific, Singapore (2007)CrossRefGoogle Scholar
  11. [11]
    Losada, R., Recio, T., Valcarce, J.L.: On the automatic discovery of Steiner-Lehmus generalizations. In: Richter-Gebert, J., Schreck, P. (eds.) Proceedings ADG 2010, Munich, pp. 171–174 (2010)Google Scholar
  12. [12]
    Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. Journal of Automated Reasoning 43, 203–236 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Andradas, C., Recio, T.: Missing points and branches in real parametric curves. Journal of Applicable Algebra in Engineering, Communication and Computing (AAECC) 18(1-2), 107–126 (2007)CrossRefzbMATHGoogle Scholar
  14. [14]

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Losada
    • 1
    • 2
  • T. Recio
    • 1
    • 2
  • J. L. Valcarce
    • 1
    • 2
  1. 1.IES de Pravia, (Asturias, Spain)Universidad de CantabriaSantanderSpain
  2. 2.IES PontepedriñaSantiago de CompostelaSpain

Personalised recommendations