Advertisement

Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials

  • Ozlem Ozgun
  • Mustafa Kuzuoglu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6785)

Abstract

We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and efficient numerical simulation tools in computational electromagnetics by allowing uniform and easy-to-generate meshes or by decreasing the number of unknowns. Inside the modified computational domain, Maxwell’s equations are still satisfied, but the medium where the coordinate transformation is applied turns into an anisotropic medium whose constitutive parameters are determined by the Jacobian of the coordinate transformation. In other words, by employing the form-invariance property of Maxwell’s equations under coordinate transformations, an equivalent model that mimics the original problem is created to get rid of mesh refinement around the small-scale features. Various numerical applications of electromagnetic scattering problems are illustrated via finite element simulations.

Keywords

Anisotropic metamaterials coordinate transformation finite element method multi-scale methods electromagnetic scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, H., Cangellaris, A.C.: Efficient Finite Element Electromagnetic Modeling of Thin Wires. Microwave Opt. Technol. Lett. 50, 350–354 (2008)CrossRefGoogle Scholar
  2. 2.
    Abakar, A., Coulomb, J.L., Meunier, G., Zgainski, F.-X., Guerin, C.: 3-D Modeling of Thin Wire and Thin Plate Using Finite Element Method and Electrical Circuit Equation. IEEE Trans. on Magnetics 37, 3238–3241 (2001)CrossRefGoogle Scholar
  3. 3.
    Qian, Z.-G., Chew, W.C.: Fast Full-Wave Surface Integral Equation Solver for Multiscale Structure Modeling. IEEE Trans. Antennas Propagat. 57, 3594–3601 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ozgun, O., Mittra, R., Kuzuoglu, M.: Finite Element / Dipole Moment Method for Efficient Solution of Multiscale Electromagnetic Problems. In: IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Canada, July 11–13 (2010)Google Scholar
  5. 5.
    Ozgun, O., Kuzuoglu, M.: Efficient Finite Element Solution of Low-Frequency Scattering Problems via Anisotropic Metamaterial Layers. Microwave Opt. Technol. Lett. 50, 639–646 (2008)CrossRefGoogle Scholar
  6. 6.
    Ozgun, O., Mittra, R., Kuzuoglu, M.: Parallelized Characteristic Basis Finite Element Method (CBFEM-MPI) - A Non-iterative Domain Decomposition Algorithm for Electromagnetic Scattering Problems. J. Comput. Phys. 228, 2225–2238 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kuzuoglu, M., Mittra, R.: Investigation of nonplanar perfectly matched absorbers for finite element mesh truncation. IEEE Trans. Antennas Propagat. 45, 474–486 (1997)CrossRefGoogle Scholar
  9. 9.
    Ozgun, O., Kuzuoglu, M.: Non-Maxwellian Locally-conformal PML Absorbers for Finite Element Mesh Truncation. IEEE Trans. Antennas Propagat. 55, 931–937 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kong, F., Wu, B.I., Kong, J.A., Huangfu, J., Xi, S., Chen, H.: Planar focusing antenna design by using coordinate transformation technology. Applied Physics Letters 91, 253–509 (2007)Google Scholar
  11. 11.
    Donderici, B., Teixeria, F.L.: Metamaterial blueprints for reflectionless waveguide bends. IEEE Microwave and Wireless Components Letters 18, 233–235 (2008)CrossRefGoogle Scholar
  12. 12.
    Vasic, B., Isic, G., Gajic, R., Hingerl, K.: Coordinate transformation based design of confined metamaterial structures. Physical Review B 79, article no. 085103 (2009)Google Scholar
  13. 13.
    Tichit, P.H., Burokur, S.N., Lustrac, A.: Ultradirective antenna via transformation optics. Journal of Applied Physics 105, article no. 104912 (2009)Google Scholar
  14. 14.
    Ozgun, O., Kuzuoglu, M.: Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings. Microwave Opt. Technol. Lett. 49, 2386–2392 (2007)CrossRefGoogle Scholar
  15. 15.
    Ozgun, O., Kuzuoglu, M.: Form-invariance of Maxwell’s Equations in Waveguide Cross-section Transformations. Electromagnetics 29, 353–376 (2009)CrossRefGoogle Scholar
  16. 16.
    Ozgun, O., Kuzuoglu, M.: Efficient finite element solution of low-frequency scattering problems via anisotropic metamaterial layers. Microwave Opt. Technol. Lett. 50, 639–646 (2008)CrossRefGoogle Scholar
  17. 17.
    Ozgun, O., Kuzuoglu, M.: Domain Compression via Anisotropic Metamaterials designed by Coordinate Transformations. J. Comput. Phys. 229, 921–932 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lindell, I.V.: Methods for Electromagnetic Field Analysis. Oxford University Press, Oxford (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ozlem Ozgun
    • 1
  • Mustafa Kuzuoglu
    • 2
  1. 1.Dept. of Electrical EngineeringMiddle East Technical UniversityTurkey
  2. 2.Dept. of Electrical EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations