Skip to main content

Energy and Path Aware Clustering Algorithm (EPAC) for Mobile Ad Hoc Networks

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6785)

Abstract

Node clustering is a technique that mitigates the change in topology in Ad hoc communication. It stabilizes the end to end communication path and maximizes the path life time. In SWARM communication, each cluster is assigned an objective and expected to complete it in the available resources. Most of the algorithms previously designed assume that the assignment of tasks can be done in any arbitrary manner and does not depend on the energy resources. In this work, we have emphasized that the number of nodes in a cluster is fundamentally related to the energy requirement of the objective. With the help of this new algorithm, we minimize energy consumption in a cluster by improving the mechanism for selecting objective, depending upon the amount of energy present at the nodes of that cluster.

Keywords

  • SWARM
  • Pareto Optimality
  • Cluster Head
  • Optimality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21898-9_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-21898-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, B., Papavassiliou, S.: A mobility-based clustering approach to support mobility management and multicast routing in mobile ad-hoc wireless networks. International Journal of Network Management 11(6), 387–395 (2001)

    CrossRef  Google Scholar 

  2. Chiang, C.C., Wu, H.K., Liu, W., Gerla, M.: Routing in clustered multihop, mobile wireless networks with fading channel. In: Proc./E SlCON, vol. 97, pp. 121–197 (1997)

    Google Scholar 

  3. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    CrossRef  Google Scholar 

  4. Gu, B., Hong, X.: Mobility identification and clustering in sparse mobile networks. In: IEEE Military Communications Conference (MILCOM 2009), pp. 1–7. IEEE, New York (2010)

    Google Scholar 

  5. Gunter, Y., Wiegel, B., Grossmann, H.P.: Cluster-based medium access scheme for vanets. In: IEEE Intelligent Transportation Systems Conference (ITSC 2007), pp. 343–348. IEEE, New York (2007)

    Google Scholar 

  6. Kawadia, V., Kumar, P.R.: Power control and clustering in ad hoc networks. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), IEEE Societies, vol. 1, pp. 459–469. IEEE, New York (2003)

    Google Scholar 

  7. Kayis, O., Acarman, T.: Clustering formation for inter-vehicle communication. In: IEEE Intelligent Transportation Systems Conference (ITSC 2007), pp. 636–641. IEEE, New York (2007)

    Google Scholar 

  8. Li, Z., Liu, S., Xiao, D., Chen, J., Li, K.: Multi-objective particle swarm optimization algorithm based on game strategies. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 287–294. ACM Press, New York (2009)

    CrossRef  Google Scholar 

  9. Mishra, S.K., Panda, G., Meher, S.: Multi-objective particle swarm optimization approach to portfolio optimization. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 1612–1615. IEEE, New York (2010)

    Google Scholar 

  10. Nasim, M., Qaisar, S.: Hierarchical MIMO: A clustering approach for Ad hoc wireless sensor networks. In: 44th Annual Conference on Information Sciences and Systems (CISS 2010), pp. 1–6. IEEE, New York (2010)

    Google Scholar 

  11. Rappaport, T.S.: Wireless communications. Prentice Hall PTR, New Jersey (2002)

    Google Scholar 

  12. Shea, C., Hassanabadi, B., Valaee, S.: Mobility-based clustering in VANETs using affinity propagation. In: IEEE Global Telecommunications Conference (GLOBECOM 2009), pp. 1–6. IEEE, New York (2010)

    Google Scholar 

  13. Stirling, T., Floreano, D.: Energy Efficient Swarm Deployment for Search in Unknown Environments. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 562–563. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  14. Stirling, T., Floreano, D.: Energy-Time Efficiency in Aerial Swarm Deployment. In: Proceedings of the 10th International Symposium on Distributed Autonomous Robotics Systems (2010)

    Google Scholar 

  15. Wang, Y., Medidi, M.: A Distributed Size-bounded Multi-hop Clustering for Mobile Ad Hoc Networks (2006)

    Google Scholar 

  16. Wu, Y., Wang, W.: MEACA: Mobility and Energy Aware Clustering Algorithm for Constructing Stable MANETs. In: IEEE Military Communications Conference (MILCOM 2006), pp. 1–7. IEEE, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asif, W., Qaisar, S. (2011). Energy and Path Aware Clustering Algorithm (EPAC) for Mobile Ad Hoc Networks. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21898-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21897-2

  • Online ISBN: 978-3-642-21898-9

  • eBook Packages: Computer ScienceComputer Science (R0)