Skip to main content

High-Quality Real-Time Simulation of a Turbulent Flame

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6785))

Abstract

We consider a 2-dimensional model of a turbulent, methane flame. The model is based on the compressible Navier-Stokes equations extended with a temperature equation and chemical reaction properties. In order to achieve a high-quality real-time simulation, a fully adaptive finite element method is used to solve the considered system of equations. The method performs adaptive mesh refinement, local adjustment of the approximation order, and multilevel adaptation. The structure and composition of the flame, along with the numerical properties of the method, such as the mesh density, are studied. The results are compared to results obtained with a direct numerical simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burman, E., Ern, A., Giovangigli, V.: Bunsen flame simulation by finite elements on adaptively refined, unstructured triangulations. Combustion Theory and Modelling 8(1), 65–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Consul, R., Pérez-Segarra, C.D., Claramunt, K., Cadafalch, J., Oliva, A.: Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers. Combustion Theory and Modelling 7(3), 525–544 (2003)

    Article  Google Scholar 

  3. Dunn, M., Masri, A., Bilger, R., Barlow, R.: Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow, Turbulence and Combustion 85(3/4), 621–648 (2010)

    Article  MATH  Google Scholar 

  4. Fukuchi, N., Takao, J., Hu, C.: Thermal properties and smoke diffusion of oil pool fires in engine room for fire safety design. International Journal of Offshore and Polar Engineering 15(1) (2005)

    Google Scholar 

  5. Graziadei, M.: Using local defect correction for laminar flame simulation. Eindhoven University of Technology (2004)

    Google Scholar 

  6. van ’t Hof, B.: Numerical Aspects of Laminar Flame Simulation. Ph.D. thesis, Eindhoven University of Technology (1998)

    Google Scholar 

  7. Kee, R., Rupley, F., Meeks, E., Miller, J.: Chemkin-III: A fortran chemical kinetics package for the analysis of gasphase chemical and plasma kinetics(1996), http://www.reactiondesign.com/products/open/chemkin.html

  8. Lamorlette, A., Foster, N.: Structural modeling of flames for a production environment. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques (2002)

    Google Scholar 

  9. Mcenally, C., Schaffer, A., Long, M., Pfefferle, L., Smooke, M., Colket, M., Hall, R.: Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame. In: Proceedings of the Combustion Institute, pp. 1497–1505 (1998)

    Google Scholar 

  10. Nguyen, D., Fedkiw, R., Jensen, H.: Physically based modeling and animation of fire. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques (2002)

    Google Scholar 

  11. Opiola, P.: A new strategy for finite element method adaptation (2010), http://www.ii.uj.edu.pl/~opiola/adaptive_fem.pdf

  12. Rao, V., Das, P., Sundararajan, T.: An adaptive hp-version of the finite element method applied to flame propagation problems. International Journal for Numerical Methods in Engineering 40(17), 3181–3203 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Skevis, G., Goussis, D., Mastorakos, E.: Understanding methane flame kinetics from reduced mechanisms. International Journal of Alternative Propulsion 1(2/3), 216–227 (2007)

    Article  Google Scholar 

  14. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner Jr., W.C., Lissianski, V., Qin, Z.: Gri-mech 3.0 (1996), http://www.me.berkeley.edu/gri_mech

  15. Teigland, R., Eliassen, I.: A multiblock/multilevel mesh refinement procedure for cfd computations. International Journal for Numerical Methods in Fluids 36(5), 519–538 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Opioła, P. (2011). High-Quality Real-Time Simulation of a Turbulent Flame. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21898-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21897-2

  • Online ISBN: 978-3-642-21898-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics